요동이 존재하는 환경에서 항법 장비 정확도의 한계 및 시스템 지연 오차 등으로 방위 위상 오차가 필연적으로 발생하는 항공기 탑재 SAR(Synthetic Aperture Radar)의 경우, 방위 위상 오차를 신호처리 알고리즘으로 추정하고 보상하는 자동 초점(Autofocus: AF) 기법 적용이 필수적이다. 본 논문에서는 수정된 가중치 최소 자승기법(Modified Weighted Least-Squares: MWLS)에 의한 자동 초점 알고리즘을 제안한다. 새로운 방식의 표적 선정 및 정렬과 방위 방향 반복 위상 추정 방식을 통해 기존 WLS보다 견고한 성능을 보이게 된다. 비행 시험을 통해 획득한 SAR 원시데이터에 제안한 방식을 적용하고 성능을 분석하여 제안한 방식의 유효함과 우수성을 입증하도록 한다.
본 논문은 웹기반 게임 소프트웨어로써 3차원 레이싱 게임 개발에 대한 논문이다. 웹을 이용한 클라이언트 접속자는 자바 애플릿을 이용하여 웹상에서 접근 가능하고 JAVA Bytecode의 다운로드에 의해 각 클라이언트 접속자의 하드웨어시스템에 무관하게 작동가능하다. 소프트웨어 구성은 뷰 포트 및 GUI 사용자 인터페이스기, 초기 공간 생성기, 이벤트 처리기, 쓰레드 관리기, 결과 분석기로 크게 5개의 부분으로 되어 있다. 뷰 포트 내의 백그라운드 이미지를 삽입할 수 있도록 하여 사용자에게 지역적인 관광 정보다 특정 홍보 이미지의 전달을 용이하게 하는데 응용이 가능하도록 이용할 수 있다.
북한의 화생방무기 운용체계는 세계적으로 상당한 수준에 도달해 있다. 이에 미국은 화생방 공격에 대비하여 다양한 형태의 대피소를 확보하고 있으며 재난특성을 고려해 등급별로 구분하여 운용하고 있는 실정이나, 한국은 재난특성에 대한 고려 없이 무분별하게 대피소를 지정해 효과적인 방호능력을 기대하기 어려운 실정이다. 이에 본 연구는 기존에 사용되는 시설물 현황에 대하여 살펴보고 화생방 대피시설로의 전환이 용이한 시설물을 선별하기 위해 시설별 특성을 파악하였으며 연구를 통해 얻은 결과 및 제안사항을 제시하고 있다.
인공지능(AI)은 최근 다양한 산업과 사회에서 패러다임을 바꾸고 있지만, 최첨단 AI 가 제조업에서는 즉각적인 성과를 보이지 못 하고 있다. 다시 말해, Industry 4.0 시점에서 기존의 접근 방법과 차별화되는 실용적인 방법론이 필요하다. 여기서 중요한 점은 '어떤' 데이터를 '어떻게' 활용하여 '어느' 부분에 적용할 것 인가이다. 제조업은 게임과 같이 가상의 캐릭터가 하나의 객체 단위로 구동되는 것이 아니라 수많은 하드웨어가 물리적으로 조합되어 연동한다. 따라서, 현실 세계에서는 물리적 마모, 고장 등으로 인해 엔지니어의 개입 없이 수천만 번 이상의 반복 학습이 불가능하다. 또, 제조업은 학습을 위한 방대한 양의 데이터를 수집하고 레이블링 하는 것이 매우 어렵다. 이 두 가지 한계를 극복할 수 있는 방법은 현실과 매우 유사한 환경을 시뮬레이션으로 재연 후 강화 학습을 사용하는 것이다. 제조 분야에서 아주 복잡한 환경 중 하나로 이송 설비가 있으며, 본 논문에서는 그리드 분류 시스템을 개발하고 강화 학습을 적용시킬 수 있는 환경을 설계한다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권2호
/
pp.421-441
/
2021
Fruit detection in orchards is one of the most crucial tasks for designing the visual system of an automated harvesting robot. It is the first and foremost tool employed for tasks such as sorting, grading, harvesting, disease control, and yield estimation, etc. Efficient visual systems are crucial for designing an automated robot. However, conventional fruit detection methods always a trade-off with accuracy, real-time response, and extensibility. Therefore, an improved method is proposed based on coarse-to-fine multitask cascaded convolutional networks (MTCNN) with three aspects to enable the practical application. First, the architecture of Fruit-MTCNN was improved to increase its power to discriminate between objects and their backgrounds. Then, with a few manual labels and operations, synthetic images and labels were generated to increase the diversity and the number of image samples. Further, through the online hard example mining (OHEM) strategy during training, the detector retrained hard examples. Finally, the improved detector was tested for its performance that proved superior in predicted accuracy and retaining good performances on portability with the low time cost. Based on performance, it was concluded that the detector could be applied practically in the actual orchard environment.
Since the import ban of plastic waste in China has been enforced, plastic wastes were not properly collected and recycled in Korea. Hence, the management strategies for plastic waste in Korea should be improved by examining the regulations and policy in developed countries such as United States, Japan, EU and United Kingdom. The management strategy for the recycling cycle should be implemented to expand the labeling system of separation and discharge, reduce the consumption of plastic products, automate the separation and sorting method in recycling facilities, and improve the economical efficiency of the recycling cycle. The concept of residual waste (secondary waste) in the material flow analysis should be implemented to identify the shortage point in the plastic waste stream. Finally, the cooperation with international communities is required for a transboundary movement of plastic waste, which includes participation at the working group of international standards to recycle plastic waste.
The purpose of this study was to assess the sustainability of laundry practices among Korean households in comparison with European households. A total of 329 responses were collected through an online survey and analyzed using SPSS. Detergent dosing, use of fabric softener, prewashing, rinsing, washing programs, and washing temperatures of Korean households were not optimal for sustainability. Only 11.2% of respondents followed dosage instructions while the majority based on load size. Use of fabric enhancer, prewashing, and rinsing were frequent. Cotton 40℃ was the most frequently used program (81.5%) while eco and cold wash programs were among the least (1.5%). In terms of laundry sorting, load size, drying, and ironing, more sustainable actions were reported. Laundry was often sorted by color, machines were commonly filled, and clothes tended to be air-dried and not excessively ironed. Gender was the primary socio-demographic factor denoting sustainable habits, with males being more attentive to instructions and care labels than females. European households, however, were more sustainable in all areas except for frequent ironing, and education level and employment status were significant factors affecting sustainable practices.
현대사회의 물류 현장에서 근로자가 직접 물류를 분류하는 작업을 하거나 상하차 작업을 진행하고 있다. 본 논문에서 제안하는 자율주행 로봇을 이용한 물류 분류 시스템은 물류 운반 로봇과 컨베이어 벨트로 구성된다. 물류 운반 로봇은 경로 설정 및 장애물 감지가 가능한 자율주행 기능을 가지며, 컨베이어 벨트는 하차된 물류의 무게 측정과 배송 가격을 표시하는 기능을 가진다. 본 연구의 결과는 근로자들의 노동 강도와 육체적 또는 정신적인 피해로 인해 발생하는 산업재해의 발생률을 감소시킬 수 있는 기대와 심야 시간에 부족한 인력을 보충하여 24시간 물류센터를 가동할 수 있는 가능성을 가진다.
To make semiconductor chips, a number of complex semiconductor manufacturing processes are required. Semiconductor chips that have undergone complex processes are subjected to EDS(Electrical Die Sorting) tests to check product quality, and a wafer bin map reflecting the information about the normal and defective chips is created. Defective chips found in the wafer bin map form various patterns, which are called defective patterns, and the defective patterns are a very important clue in determining the cause of defects in the process and design of semiconductors. Therefore, it is desired to automatically and quickly detect defective patterns in the field, and various methods have been proposed to detect defective patterns. Existing methods have considered simple, complex, and new defect patterns, but they had the disadvantage of being unable to provide field engineers the evidence of classification results through deep learning. It is necessary to supplement this and provide detailed information on the size, location, and patterns of the defects. In this paper, we propose an anomaly detection framework that can be explained through FCDD(Fully Convolutional Data Description) trained only with normal data to provide field engineers with details such as detection results of abnormal defect patterns, defect size, and location of defect patterns on wafer bin map. The results are analyzed using open dataset, providing prominent results of the proposed anomaly detection framework.
Nalamani G. Praveena;Kandasamy Selvaraj;David Judson;Mahalingam Anandaraj
ETRI Journal
/
제45권5호
/
pp.899-909
/
2023
In mobile communication, the most exploratory technology of fifth generation is massive multiple input multiple output (MIMO). The minimum mean square error and zero forcing based linear detectors are used in multiuser detection for MIMO single-carrier frequency division multiple access (SCFDMA). When the received signal is detected and regularization sequence is joined in the equalization of spectral null amplification, these schemes experience an error performance and the signal detection assesses an inversion of a matrix computation that grows into complexity. Ordered successive interference cancelation (OSIC) detection is considered for MIMO SC-FDMA, which uses a posteriori information to eradicate these problems in a realistic environment. To cancel the interference, sorting is preferred based on signal-to-noise ratio and log-likelihood ratio. The distinctiveness of the methodology is to predict the symbol with the lowest error probability. The proposed work is compared with the existing methods, and simulation results prove that the defined algorithm outperforms conventional detection methods and accomplishes better performance with lower complication.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.