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Abstract 
 

Fruit detection in orchards is one of the most crucial tasks for designing the visual system of 

an automated harvesting robot. It is the first and foremost tool employed for tasks such as 

sorting, grading, harvesting, disease control, and yield estimation, etc. Efficient visual systems 

are crucial for designing an automated robot. However, conventional fruit detection methods 

always a trade-off with accuracy, real-time response, and extensibility. Therefore, an improved 

method is proposed based on coarse-to-fine multitask cascaded convolutional networks 

(MTCNN) with three aspects to enable the practical application. First, the architecture of Fruit-

MTCNN was improved to increase its power to discriminate between objects and their 

backgrounds. Then, with a few manual labels and operations, synthetic images and labels were 

generated to increase the diversity and the number of image samples. Further, through the 

online hard example mining (OHEM) strategy during training, the detector retrained hard 

examples. Finally, the improved detector was tested for its performance that proved superior 

in predicted accuracy and retaining good performances on portability with the low time cost. 

Based on performance, it was concluded that the detector could be applied practically in the 

actual orchard environment. 
 

 

Keywords: Fruit Detection, Coarse-to-Fine, Synthetic Dataset, Harvesting Robot, Multi-

task Cascaded 
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1. Introduction 

Due to the rapid development of autonomous robots and precise agriculture, more and more 

automation equipment is becoming available in the field of agriculture [1, 2]. Generally, there 

are two reasons for this rapid development. One is that the use of automated robots in 

agriculture greatly reduce labor cost, and bring more profit for the enterprise [3-7]. The other 

reason is the strong demand for unified quality and standard agricultural products. Therefore, 

studies initiated on automated robots to facilitate agricultural production decades ago [8-10]. 

In this regard, high accuracy and low time costing fruit detection methods are required for a 

variety of follow-up works. 

Fruit detection in uncertain and unrestrained orchards indubitably encounters numerous 

challenging tasks, such as variation of the pose, low-resolution, heavy occlusion by 

neighboring fruits or foliage, indistinguishable backgrounds, insufficient or over-illumination, 

and so on. In recent years, studies have been conducted to develop robust fruit detection 

algorithms based on the high performance of deep learning. On one hand, although many deep 

learning-based methods outperform very well compared with traditional ones, a sufficient and 

diverse dataset is an inevitable important for most of these methods. More seriously, it is hard 

to use one dataset as a standard benchmark, due to the different varieties and growth 

environment of fruits in the wild of orchards. Flexible and simple methods to set up a dataset 

is required for the promotion to practical application. On the other hand, many studies regard 

fruit detection as conventional object detection, so most of these studies are based on classical 

object detection architecture which achieves remarkable results. However, in some cases, these 

methods have a deficiency in considering the number of parameters and the prediction time 

cost. Due to the methods with very deep layers and a large number of parameters is pessimistic 

to be deployed to automatic robots. The main contributions of the paper are summarized as 

follows: 

 This is the first attempt to generate a synthetic dataset for fruit detection. Only a few manual 

operations are needed to generate a large number of random diversities that are very close 

to the samples captured in a real scene environment. The detection model trained with a 

supplemental synthetic dataset greatly improves the results. 

 We improved fruit detection based coarse-to-fine multi-task cascaded convolutional 

network (Fruit-MTCNN) [11] architecture by applying center loss function. This was the 

first attempt of using the center loss to increase the inter-class variations in fruit detection. 

This novel architecture is named as Fruit-MTCNN-Imp, for short. Moreover, the OHEM 

strategy was used during the model training to level up the discrimination power of the fruit 

detector by strengthening the learning of prone to false predicted images. 

 Extensive quantitative and qualitative evaluations demonstrate the proposed synthetic 

dataset and improved detection methods are effective for fruit detection task in the wild of 

orchards. 

The rest of the paper is organized as follows. Section 2 introduces the background and 

related work. Section 3 describes both conventional and synthetic datasets used in this study, 

and the method how to generate synthetic images is described in detail. Section 4 of this paper 

presents the improved architecture and training strategy of Fruit-MTCNN-Imp. The 

experimental results are demonstrated in section 5. Section 6 encompasses a detailed 

discussion of the experimental results. Conclusions and the future work plan are shown in 

section 7. 
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2. Related Work 

Fruit detection is one of the most essential tasks in an automated robot visual system. It has 

been studied for decades and has gained remarkable progress. In this section, the background 

and some previous efforts made in this area are enumerated. 

2.1 Traditional Methods 

Traditional methods for fruit detection can be divided into two categories, one is based on 

image processing technology, as mentioned by [12-16]. To detect crops from images, [12] 

based on the assumption that the color of the crop maintained within one or several simply 

connected domains, [13] proposed an algorithm based on image processing technology to 

convert RGB color space to CIE-Lab values for inspecting the surface color of two Thai mango 

cultivars, [15] detected fried potato chips by extracting discriminatory features in the 

continuous wavelet transform domain using Morlet wavelet. [16] also developed an automatic 

tomato grading system based on image processing technology. In general, all the above 

methods are designed only for a specific task, highly dependent on the characteristics of the 

subjects which need to be re-designed when there is only a slight change in conditions. 

Therefore, the disadvantages of such kinds of methods are highly dependent on a certain 

condition, prone to reduce accuracy drastically when met tiny changes. 

The other category is based on machine learning technology reported by [17-23]. Based on 

the consideration of choosing the proper time, [17] explored a method based on k-Means 

clustering to choose a proper time. [20] used naive Byes and support vector machine (SVM) 

for grading mangoes into three categories. The advantages of these methods are exhibit higher 

accuracy and more robust stability compared with the methods based on image processing, 

when face slight changes. However, these kinds of methods are needed to extract proper 

features by experienced experts, such as surface pixel, color, shape, and size. Therefore, there 

is still a long distance to get them promoted to the level of practical use. 

2.2 Deep Learning based Methods 

During the recent years, deep learning based methods have made remarkable progress in many 

fileds [24], such as Internet of Things [25, 26], Signal processing [27, 28], UAV [29], wireless 

communications [30], and especially in the field of agriculture [31-35]. These include fruit 

classification [36-38], yield estimation and counting [39, 40]. Overall, the prevailing deep 

learning based fruit detection methods can be divided into two categories, one is based on the 

two-stage structure of faster region-based convolutional neural networks (Faster-RCNN) [41], 

such as [42-49]. [42] presented an algorithm to detect and classify passion fruits based on 

maturity. They trained Faster-RCNN on RGB data and depth data, and fused these two 

detectors to make an RGB-D detector to achieve higher accuracy for passion fruits detection. 

[43] presented a novel method using color and thermal images to Faster-RCNN architecture 

to detect immature green citrus fruits. [44] presented a Faster-RCNN based approach for fruit 

detection by exploiting both color images and Near-Infrared images, and then explored the 

two information methods for early and late fusion. Similarly, [45] also used Faster-RCNN for 

mango, almond and apple detection in orchards. [45-49] also present a benchmark dataset for 

apple detection, which largely reduce the task of image collection for deep CNNs training. The 

above methods based on Faster-RCNN achieved leap forward improvements. However, the 

higher time cost is one of weakness, which may limit these methods promoted to the practical 

application. 
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Another one is based on one-stage structure, such as the series of you only look once [50, 

51] (YOLO). [52] exploit YOLO for real-time apple detection with tree. [53] explored YOLO 

as a baseline model to detect apples during different growth stages. Such kind of one stage 

fruit detector with less time cost compared with methods based on the two stages, although 

slightly inferior in the aspect of accuracy. It may due to that both the architecture of Faster-

RCNN and YOLO series are proposed for the multi-class objects detection, so they have deep 

network layers and a large number of parameters which beyond the hardware capacity of 

automatic robots. Therefore, a more suitable fruit detection system is needed to be developed 

under such circumstances. 

3. Description of Dataset 

Although [45-49] presented benchmark for apple detection, similarly environment factor (e.g., 

resolution of camera, varieties, illumination, the distance, angle between camera and the target 

objects etcetera.) for each benchmark setup will weak the generalization ability of the trained 

model to a new environment. Due to these reasons, this paper generates a synthesis dataset 

which only need few samples. 

3.1 Image Acquisition and Conventional Dataset 

A Canon EOS 100D digital camera was used to capture nearly 1800 images from an apple 

orchard. During image acquisition, we changed the camera’s viewing angles and shooting 

distance to collect diverse samples. Besides, our method applied training data from Internet 

and ImageNet (an open-source database) [54] which were easily acquired. All the objects were 

labeled manually as individual image datasets. According to the density of objects, divided 

these images into training and test datasets randomly with a ratio nearly three to one. 

3.2 Preparation of Elements for the Synthetic Dataset 

Considering the ever-changing orchard environment, more diversified samples are beneficial 

for the detection network training and final result. On the contrary, collection and annotation 

of images to set up a sufficient dataset is a time-consuming and boring task. Therefore, an 

attempt was made to find methods to simplify the process in order to generate image data close 

to the images captured in the real environment. In this study, a novel method is described to 

generate dataset only with a few labeled images that would further create images highly similar 

to those obtained in the real environment [55]. The overall flowchart is shown in Fig. 1. 

3.3 Background and Objects Description 

In this study, scene images of an apple orchard were randomly collected as background images. 

These images included orchard environment such as sky, ground, apple trees, etc. For 

foreground scene, objects were widely divided into two categories i.e., positive objects and 

negative objects. Positive objects indicate the objects wanted to be detected, so diverse 

viewpoints of apple images were chosen as positive object images. Negative objects indicate 

the objects with high probability to influence positive objects. Image data were generated as 

close to the real data as possible, so multi-view point branch and leaf object were collected as 

negative objects. The number of each category are shown in Table 1. 
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Fig. 1.  The flowchart of generating synthesis dataset 

In Fig. 1, is four parts are needed to generate synthesis images. They are background 

images, positive object images, transfer operation, and negative object images. Particularly, 

each object with one RGB image and one corresponding black-white mask image. Transfer 

operation includes rotating transformation, scale transformation, Gaussian noise, and a blur of 

motion and Poisson. Four synthesis images are generated each time, the original image (None), 

the image with Gaussian noise (Gaussian), the image with Motion blur (Motion) and the image 

with Poisson blur (Poisson). 
 

Table 1. The Object Number of Each Category 

Name of each category Number 

Foreground 
Positive Object 

Fruits 132 

Leaves 35 

Negative Object Branches 12 

 

Background Image 

 

29 

 

3.4 Object Segmentation 

There are many deep learning-based segmentations network models that have achieved 

outstanding performance. Generally, these methods suit to a variety of different categories. In 

this study, only four categories needed to be distinguished i.e., background, apple fruits, leaves, 
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and branches. Based on these considerations, the GrabCut method was adopted for image 

segmentation. 

GrabCut is an image segmentation method derived from the GraphCut algorithm [56]. In 

this case, based on the specified bounding box of the object to be segmented, a Gaussian 

mixture model (GMM) is used to estimate the color distribution of the object and its 

background. This algorithm can achieve the optimal segmentation of foreground and 

background with a few labeled pixels. For comparing contrast texture or color information in 

the image, this algorithm can achieve a better segmentation effect with only a few user 

interaction operations and with high accuracy performance. Based on the above considerations, 

GrabCut algorithm was deemed the most appropriate choice for this work. 

Here an energy function E is defined so that its minimum should correspond to a good 

segmentation. It is guided by both the observed foreground and background grey-level 

histograms and that the opacity is “coherent”, reflecting a tendency to the solidity of objects. 

As shown in (1): 
 

( , , , ) ( , , , ) ( , )E k z E k z V z    = +                                            (1) 

 

where the data term U evaluates the fit of the opacity distribution to the data z, given the 

histogram model q, and is defined as in (2): 
 

( , , , ) ( , , , )n n nU k z D k z   =                                                     (2) 

 

Each GMM, i.e., one for the background and one for the foreground, is taken to be a full-

covariance Gaussian mixture with K components (typically K = 5). 
1{ , , , , }n NK k k k= and 

{1, , }nk N assigning, to each pixel, a unique GMM component, one component either from 

the background or the foreground model, according to 
n

 =0 or 
n

 =1. D is defined in (3) as: 

 

  

   1

1
( , , , ) log ( , ) log det ( , )

2

1
( , ) ( , ) ( , )

2

n n n n n n n

T

n n n n n n n n

D k z k k

z k k z k

    

    −

= − + +

− −




                               (3) 

 

and { ( , ), ( , ), ( , ), 0,1, 1 }k k k k K      = = = where the weights 𝜋 , means  , and 

covariance ∑of the 2K Gaussian components for the background and foreground distributions. 

Finally, the smoothness term V is defined in (4) as: 

 

 
2

( , )

V( , )= expn m m n

m n C

z a a z z  


 − −                                             (4) 

 

We used the GrabCut method to get some object for ‘paste’. Each positive or negative 

objects should have a pair of images; one is this segmented object color image and the other 

is black-white binary mask image. We only needed to label a few pixels to generate 

corresponding images and some segmented objects as shown in Fig. 2. 
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Fig. 2.  Few steps to generate segmented objects 

In Fig. 2, the first column (starting from left) is the original images of the objects. The 

second column is recorded after manual annotation, which includes two steps, the first step is 

to segment the object from the background with a blue rectangle, then label background (black 

line) and foreground (white line). The third column is the result after the GrabCut segmentation 

algorithm. The final column represents the corresponding masked images of the object. 

3.5 Synthesis Dataset 

After being prepared with each necessary element, we generated synthesis image data by 

'pasting' the images of the positive or negative object to the background image. The 

corresponding annotation file generated at the same time. Table 2 presents the algorithm to 

generate synthesis dataset, such synthetic images were applied in the later training and 

evaluation which proved to improve final outputs effectively. According to occlusion 

conditions, specifically four categories of synthesis images were generated, i.e., 1. without 

occlusion and negative object, 2. without occlusion and with negative object, 3. with occlusion 

and without negative object, and 4. with occlusion and with negative object. Fig. 3 shows some 

examples of synthesis image data.  

Further, synthetic image generation was extended through augmentation methods. For 

generating one original synthetic image, three types of augmented images i.e., Gaussian blur, 

Motion blur, and Poisson were blended. A total of 3110 synthetic data were generated. The 

final data generated for each category are shown in Table 3. In addition, it’s worth note that 

these synthesized images only used as a complementary part of the training dataset. 
 

Table 2. Algorithm to generate synthesis dataset 

Require: Initialization:  
Ensure: 

1. The foreground set 
F

T = , background =
U B

T T , 
B

T  is initialized by the 

user. 

2. Initialize  0 =
n

 for 
B

n T  and 1 =
n

 for 
U

n T  
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3. 0 =
n

 and
1

1 =   for background and foreground GMMs initializing 

respectively. 

Require:User editing 

Fix some pixels 0 =
n

 as background, fix some pixels 1 =
n

 as foreground 

brush; update map (T) accordingly (this step can be performed during the entire 

iterative minimization algorithm) . 

 

Iterative minimization 

1. For 𝑖 = 1 𝑡𝑜 𝑛, do: 

2. Assign GMM components to pixels: for each n  in 
U

T  

( ): argmin , , , .
n

n n n n n
k

k D a k z=   

3. Learn GMM parameters from data z : 

  ( ): arg min , , , .


 = U a k z  

4. Estimate segmentation: use min cut to solve: 

  
 

( )
:

min min , , , . 
n Ua n T K

E k z  

5. End for 

6. Apply border matting. 

7. Save the corresponding mask file. 

 

 

 
Fig. 3.  Samples from synthetic dataset 

 

In Fig. 3, the first, second, third, and fourth rows (from top to bottom) represent images 

with one, two, three, and four positive objects (fruits) instances respectively. The first and the 

second columns (from left) present some examples generated without occlusion and negative 

samples. The third and fourth columns represent the images generated with occlusion and 

negative sample influence. 
 

 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 2, February 2021                            429 

 

 

Table 3. The number of final data generated for each category 

Scale Rotation Occlusion Negative samples number 

YES YES NO NO 695 

YES YES YES NO 765 

YES YES NO YES 715 

YES YES YES YES 935 

4. Our Proposed Improved Fruit-MTCNN Method 

Although Fruit-MTCNN detector provided good performance, it still needed improvement to 

reduce the negative result overall. Therefore, a deeper investigation of the Fruit-MTCNN 

framework was conducted with two aspects. One aspect was based on a newly developed 

multi-task loss function in the Fruit-MTCNN model to deeply discriminate features for fruit 

or non-fruit classification. The other aspect was based on the online hard example mining 

method during training to generate hard samples for intensive learning. The detailed 

description of the improved Fruit-MTCNN is elaborated as follows. 

4.1 Fruit-MTCNN based Architecture 

The Fruit-MTCNN architecture was used as the baseline framework, as shown in Fig. 4. Fruit-

MTCNN consisted of three sub-networks. They are proposal network (PNet), refine network 

(RNet), and output network (ONet) respectively.  

In the first stage, a large number of coarse detectors were generated from PNet and then 

passed to RNet as inputs. In the second stage, RNet refined coarse candidate windows and 

bounding boxes from PNet. Finally, such refined candidate windows from RNet passed to 

ONet for further step refinement processing. With these three cascaded tiny networks, the fruit 

detectors getting from coarse to fine values with very low computation requirement which 

could be applied to harvesting robots easily. 

4.2 Loss Function 

Motivated by the familiar analysis features of false positive and false negative samples 

predicted by Fruit-MTCNN deeply, we considered strengthening the ability of this detector to 

distinguish between the class of fruit and its background. Considering that PNet played a 

primary role in providing the initial candidate bounding box, we only improved the loss 

function of RNet and ONet. They are expressed as follows in (5): 

 
* *( , , ) ( , ) ( ) ( , )cls c regLoss p t x L p p L x L t t  = + +                                (5) 

 

where Lcls(p,p*), Lc(x), Lreg(t,t
*) represent softmax loss, center loss, and regression loss 

respectively. In this paper, the values of the three coefficients 𝛼, 𝛽, 𝛾 are 0.45, 0.05, and 0.5 

respectively. p, p* present the ground-truth value and the estimated value of the probability 

respectively. t, t* present the ground-truth value and the estimated value of the bounding box 

value respectively. x shows the points for a center loss. The loss function of PNet was kept the 

same with Fruit-MTCNN, expressed as (6): 

 
* *( , , ) ( , ) ( , )cls regLoss p t x L p p L t t = +                              (6) 
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Fig. 4.  The overall architecture of the coarse-to-fine fruit detector. From top to bottom, they are PNet, 

RNet and ONet respectively. “Conv” is convolution and “MP” represents max pooling. 

 

4 where Lcls(p,p*) and Lreg(t,t
*) are softmax loss 206 and regression loss respectively  =0.5 

and  =1.0. 

4.2.1 Center Loss 

By learning a center for deep features of each class and penalizing the distances between the 

deep features and their corresponding class centers, center loss with good performance in 

distinguishing between each class [57] was acquired as per (7) as follows: 

1

1

( ) ( )
,

1 ( )

m

i i j ic

i yi j m

i i i

y j c xL
x c c

x y j





=

=

=  −
= −  =

 + =




                                     (7) 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 2, February 2021                            431 

 

 

 

due to the difficulties of updating the entire training set, this operation taken on a min-batch 

𝑚. 𝐿𝑐 , 𝑐𝑦𝑖 are presented as the gradients and update equation respectively. Where d

yic R indicates 

the yi th class center of deep features, the d

ix R  indicates the deep features belonging to the 

yi th class. If yi equals to j, ( ) 1iy j = = , otherwise ( ) 0
i

y j = = . So that the value will be 

restricted to [0, 1] to control the learning rate of the centers. 

4.2.2 Softmax Loss 

The classification task is to distinguish fruits from the background, so it can be regarded as a 

two-class classification problem. Cross-entropy loss is exploited for each sample xi. Thus, the 

softmax loss function is shown in (8): 

 

( log( ) (1 )(1 log( )))
cls cls cls

i i i i iL y p y p= − + − −                                    (8) 

 

where {0,1}
cls

iy   presents ground-truth value, pi is the probability of the input sample xi, being 

a fruit. 

4.2.3 Regression Loss 

The regression loss is applied to align the fruit detectors to the ground-truth values during the 

training. There are four coordinates for each bounding box, and the regression loss function is 

shown in (9). 

 
2

2

reg

reg reg

i ii
L y y



= −                                                          (9) 

 

where 
reg

i
y


 denotes the predicted values by the detector and 
reg

i
y


 is the corresponding ground-

truth value. 

4.3 Online Hard Example Mining 

One way of strengthening the discrimination ability of the fruit-detector is by re-learning the 

hard examples, which failed to predict. In this study, the OHEM method was employed that 

included three steps [58]. First, all the true negative samples were collected and false-positive 

samples were predicted by the detector. Then, in order to balance the positive samples and 

negative samples, a ratio of 1:1 was set in each mini-batch. Finally, after each SGD iteration, 

the selected hard examples were fed to the network in the next iteration by a forward pass 

through the current network. 

5. Experiments 

5.1 Evaluation Metrics 

In the present study, precision rate (P) and recall rate (R) were utilized as evaluation methods 

for fruit detection. The P and R were computed as per the formulae shown in (10): 
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,
TP TP

P R
TP FP TP FN

= =
+ +

                                                   (10) 

 

where TP presents the number of the correct detection results. FP is the false detection number, 

and FN is the number of missing objects. The F1 score was also used to evaluate the 

performance of the model. The definition of the F1 score is shown as follows in equation (11): 

 

2
1

P R
F

P R

 
=

+
                                                                   (11) 

5.2 Influence of Different Architectures 

The proposed improved detector (Fruit-MTCNN-Imp) was compared with a previous detector 

(Fruit-MTCNN) to verify the performance of its improved architecture. All the other 

conditions that could possibly influence were kept the same. These influence factors include 

using the same dataset for training and testing, the number of iterations for each subnet (PNet, 

RNet, and ONet) during training, and the same threshold value for testing.  

The P-R curves for these two detectors are shown in Fig. 5, and some test results are given 

in Fig. 6 Based on the experimental results, it was observed that the proposed Fruit-MTCNN-

Imp showed significant improvements for the final detection task over the previous version. 
 

 
Fig. 5.  P-R curves predicted by detection models with different architecture and the square points are 

presented as each F1-score. 
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Fig. 6.  Some examples predicted by the two detectors. The left column shows results predicted by 

Fruit-MTCNN. The right column depicts the results predicted by the Fruit-MTCNN-Imp detector for 

the same images. 

5.3 Influence of Synthetic Dataset 

In order to verify the effect of the synthetic images during the training of the model, three 

datasets i.e. conventional, synthetic, and conventional ones mixture with synthetic images (O-

S) were created. Firstly, conventional and synthetic datasets were achieved through the 

methods presented in section 3 and section 4 respectively. After that, the O-S dataset was 

created by mixing all of the images from the conventional and synthetic datasets. Moreover, 

we randomly divided each dataset into a training set and a test set by the ratio of 6 to 4. 

Finally, the Fruit-MTCNN-Imp model was trained on these three datasets. During training, 

the number of iterations for each subnet (PNet, RNet, and ONet) was kept the same. The 

threshold value was also kept the same during the test. During Ⅴthe test of each model, P-R 

curves were also drawn as shown in Fig. 7. Fig. 8 depicts some typical samples predicted by 

these detectors.  
  

 
Fig. 7.  P-R curves predicted by different detection models trained on different datasets and the square 

points are presented as F1-score. 
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Fig. 8.  Some examples predicted by improved Fruit-MTCNN trained on different datasets.  

 

In Fig. 8, the left column is the results of the detector trained on the original dataset. The 

middle column is the results of the detector trained on synthesis dataset. The right column is 

the results of the detector trained on the mixed dataset (original dataset mixed with synthesis 

dataset). 

The P-R curves and the F1 score values show that the model trained on the O-S dataset 

was significantly superior to that trained on the other two datasets. The performance of the 

model trained on the conventional dataset was close to the model trained on a synthetic dataset, 

which indicated that the synthesized image data set was very close to the images captured in a 

real environment. 

5.4 Influence of OHEM 

In order to verify the influence of OHEM strategy on the performance and final prediction of 

the model, one Fruit-MTCNN-Imp architecture was built with OHEM strategy and the other 

one without it. The rest of the factors were kept the same whilst training these two models. 

Finally, P-R curves predicted during the test of each model were drawn, as shown in Fig. 9.  

From the P-R curves, it is obvious that the model trained with the OHEM strategy 

substantially improved the final detection result. 

5.5 Influence of different levels of overlaps 

In this section, the impact of the severity of occlusion is analyzed. The test dataset was divided 

into three levels according to the severity of occlusion. These were light, medium, and heavy 

occlusions. P-R curves predicted by the pre-trained model for these datasets were drawn, as 

shown in Fig. 10.  

The results indicate that for the objects with lighter occlusion, the detector predicted with 

higher accuracy. On the contrary, with heavier occlusion, the detection accuracy was severely 

affected. 
 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 2, February 2021                            435 

 

 

 
Fig. 9.  P-R curves predicted by detection models trained with or without OHEM strategy, and the 

square points are presented as F1-score. 

 

 
Fig. 10.  P-R curves of apple detection models for different severity levels of occlusion, and the 

square points are presented as F1-score. 

 



436                                                                         Zhang et al.: High-Quality Coarse-to-Fine Fruit Detector for Harvesting Robot  
in Open Environment                                                               

 

6. Discussion 

Previous work in the field of fruit detection has some substantial achievements in terms of 

paving the way towards designing automated robots. However, there was still space for further 

improvement before these models could be successfully used in the field of agriculture. It was 

clear scope for improvement in the architecture of the model in order to make it more suitable 

for use in horticultural production. Therefore, this study attempted to improve the performance 

of the model by manipulating some vital perspectives, such as the model architecture, training 

strategy, and dataset.  

Firstly, a large number of samples for model training have already been verified by many 

studies. However, setting up such a kind of sufficient and diversified is a difficult, boring, and 

time-consuming task most of the time. To set up the synthetic dataset, only a few labels are 

needed to generate a number of images with the corresponding labels, which greatly reduce 

manual operation. The model trained on a synthetic with good performance verified that the 

image generated by this synthetic method was very close to the real environment. This method 

also generated augmented images of data as good supplements. The model trained on O-S was 

much better than the model trained on the other two datasets. This result indicated that the 

generated images had differences with conventional captured images. Thus, the synthetic and 

conventional complemented each other. Therefore, O-S had more diversity than the other two 

datasets. From the results, we can confidently believe that such kind synthetic dataset is 

effective for the fruit detection task. 

Secondly, by adding the center loss function to the architecture of the model, an attempt 

was made to reduce variation and enhance inter-class variation and hence reduce some false-

positive and false-negative results. Although center loss had certain advantages, it was very 

hard to increase the weight of this loss function. When we increase the weight of center loss 

more than 0.5, this whole architecture was very hard to converge. Even worse, the accuracy 

reduced rapidly. It is due to the loss function still plays an irreplaceable key role in this 

detection task. 

Thirdly, the OHEM strategy was used during training to strengthen the performance of the 

detector by retraining the hard examples. Such a training strategy can improve the performance 

to a certain extent. However, it is difficult to improve the detector performance greatly due to 

the limitation of hard example diversity.  

Finally, the model was evaluated on three levels of occlusion severity. The experiments 

showed that heavy occlusion decreases the accuracy of prediction results. Mainly, there are 

two reasons for this. One is that the obscured objects destroy integrity. It is liable to predict 

erroneous results if only a few parts of the object are visible. The other reason is the non-

maximum suppression (NMS) strategy. At present, most of the object detection task is based 

on deep learning NMS methods to select the best candidate bounding box during training or 

testing. However, when there are dense fruits on the tree, one fruit prone to be heavily occluded 

by the others, the NMS method will suppress the candidate bounding box, which is not the 

max probability value but has a high value of IOU with the max probability value’s candidate 

bounding box. So, there is a great possibility that such objects will be missed by the detector. 

7. Conclusion and Future Work 

This study presents further improved coarse-to-fine networks for fruit detection in orchards, 

from three aspects. First, for increasing the diversity samples for the model training and 

reducing the cost of manual collection and labeling, synthetic images were generated to set up 
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a dataset for training deep CNNs. The experimental results confirm that training based on this 

synthetic dataset greatly improved the accuracy of the detector. Then, for better distinguishing 

features of objects and background, the loss function was modified by adding the center-loss 

function to improve the discrimination power. Furthermore, for intensifying the learning effect 

of the model, the OHEM strategy was employed during training. By re-learning hard examples, 

the model provided better performance for the prone to be false predicted images. Finally, the 

output results reach 1.16 frames per second which show the presented method could be 

promoted in the practical agricultural field. 

Moreover, intensive and extensive discussions about the probable reasons caused by the 

severity of occlusion. In further, the detection task for heavily occluded objects would be the 

focus of the study. 
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