Acknowledgement
This study is a research project conducted with the support of the Ministry of Trade, Industry and Energy (MOTIE) and the Korea Energy Technology Evaluation Institute (KETEP). (No. 2021202090056C, 20213030030190)
References
- Amari, S.-I., Backpropagation and stochastic gradient descent method, Neurocomputing, 1993, Vol. 5, pp. 185-196. https://doi.org/10.1016/0925-2312(93)90006-O
- Baek, S.H., Lee, C.H., and KIM, S.B., New Pattern Detection of Wafer Bin Map Using Deep-Learning, KIIE, 2021, Vol. 46, pp. 326-337. https://doi.org/10.7232/JKIIE.2020.46.3.326
- Buades, A., Coll, B. and Morel, J.-M., A non-local algorithm for image denoising, IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), 2005, Vol. 2, pp. 60-65.
- Clevert, D.-A., Unterthiner, T., and Hochreiter, S., Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs), ICLR, 2016.
- Do, H., Lee, C., and Kim, S.B., A Hierarchical Spatial-Test Attention Network for Explainable Multiple Wafer Bin Maps Classification, IEEE Transactions on Semiconductor Manufacturing, 2022, Vol. 35, pp. 78-86. https://doi.org/10.1109/TSM.2021.3121006
- Huang, C.-J., Wu, C.-F., and Wang, C.-C., Image Processing Techniques for Wafer Defect Cluster Identification, IEEE Design & Test of Computers, 2002, Vol. 19, pp. 44-48. https://doi.org/10.1109/54.990441
- Hubel, D.H. and Wiesel, T.N., Receptive fields of single neurones in the cat's striate cortex, PHYSIOLOGY, 1959, Vol. 148, pp. 574-591. https://doi.org/10.1113/jphysiol.1959.sp006308
- Ji, Y.J., Decomposition of mixed defect pattern in wafer bin map via Grad-CAM (Gradient-Class Activation Map) [master's thesis], [Seoul, Korea]: Hanyang University, 2021.
- Jin, C.H., Na, H.J., Piao, M., and Pok, G., A Novel DBSCAN-Based Defect Pattern Detection and Classification Framework for Wafer Bin Map, IEEE Transactions on Semiconductor Manufacturing, 2019, Vol. 32, pp. 286-292. https://doi.org/10.1109/TSM.2019.2916835
- Kingma, D.P. and Ba, J.L., ADAM: A METHOD FOR STOCHASTIC OPTIMIZA TION, ICLR, 2015.
- Krizhevsky, A., Sutskever, I., Hinton, G.E., ImageNet Classification with Deep Convolutional Neural Networks, Neural Information Processing Systems 25 (NIPS 2012), 2012, Vol. 60, pp. 84-90. https://doi.org/10.1145/3065386
- LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., and Jackel, L.D., Backpropagation Applied to Handwritten Zip Code Recognition, Neural Computation, 1989, Vol. 1, pp. 541-551. https://doi.org/10.1162/neco.1989.1.4.541
- Liu, C.-W. and Chien, C.-F., An intelligent system for wafer bin map defect diagnosis: An empirical study for semiconductor manufacturing, In Engineering Applications of Artificial Intelligence, 2013, Vol. 26, pp. 1479-1486. https://doi.org/10.1016/j.engappai.2012.11.009
- Liznerski, P., Ruff, L., Vandermeulen, R.A., Franks, B.J., Kloft, M., and Muller, K.-R., Explainable Deep One-Class Classification, ICLR, 2021.
- Long, J., Shelhamer, E. and Darrell, T., Fully Convolutional Networks for Semantic Segmentation, CVPR, 2015, pp. 3431-3440.
- Loshchilov, I. and Hutter, F., Decoupled Weight Decay Regularization, ICLR, 2019.
- Luo, W., Li, Y., Urtasun, R. and Zemel, R., Understanding the Effective Receptive Field in Deep Convolutional Neural Networks, NIPS, 2016.
- Nair, V. and Hinton, G.E., Rectified Linear Units Improve Restricted Boltzmann Machines, ICML, 2010, pp. 807-814.
- Nakazawa, T. and Kulkarni, D.V., Wafer Map Defect Pattern Classification and Image Retrieval Using Convolutional Neural Network, IEEE Transactions on Semiconductor Manufacturing, 2018, Vol. 31, pp. 309-314. https://doi.org/10.1109/TSM.2018.2795466
- Ruff, L., Vandermeulen, R.A., Gornitz, N., Deecke, L., Siddiqui, S.A., Binder, A., Muller, E., and Kloft, M., Deep One-Class Classification, 35th International Conference on Machine Learning ICML, 2018, pp. 4393-4402.
- Ruff, L., Vandermeulen, R.A., Gornitz, Binder, N., A., Muiiller, E., Muller, K.-R., and Kloft, M., Deep SemiSupervised Anomaly Detection, ICLR, 2020.
- Ruff, L., Vandermeulen, R.A., Franks, B.J., Muller, K.-R., and Kloft, M., Rethinking Assumptions in Deep Anomaly Detection, ICML, 2021.
- Tax, D.M.J. and Duin, R.P.W., Support Vector Data Description, Machine Learning, 2004, pp. 45-66.
- Tomasi, C., Manduchi, R., Bilateral Filtering for Gray and Color Images, IEEE 6th International Conference on Computer Vision, 1998, pp. 839-846.
- Wang, C.-H., Separation of Composite Defect Patterns on Wafer Bin Map Using Support Vector Clustering, Expert Systems with Applications, 2009, Vol.36, pp. 2554-2561. https://doi.org/10.1016/j.eswa.2008.01.057
- Wang, J., Xu, C., Yang, Z., Zhang, J., and Li, X., Deformable Convolutional Networks for Efficient Mixed-Type Wafer Defect Pattern Recognition, IEEE Transactions on Semiconductor Manufacturing, 2020, Vol.33, pp. 587-596. https://doi.org/10.1109/TSM.2020.3020985
- Wu, M.-J., Jang, J.-S.R., Chen, J.-L., Wafer Map Failure Pattern Recognition and Similarity Ranking for Large-Scale Data Sets, IEEE Transactions on Semiconductor Manufacturing, 2015, Vol. 28, pp. 1-12. https://doi.org/10.1109/TSM.2014.2364237
- Xu, B., Wang, N., Chen, T. and Li, M., Empirical Evaluation of Rectified Activations in Convolution Network, arXiv:1505.