• Title/Summary/Keyword: Soot measurement

Search Result 83, Processing Time 0.035 seconds

Soot Measurement in an Optically Accessible Diesel Engine Using Laser Sheet (2nd reprot: The Measurement for diameter and number density of Soot) (레이저시트광을 이용한 가시화 디젤엔진에서의 Soot 계측(제2보 : Soot 입경분포 및 수밀도 계측))

  • 이명준;박태기;하종률;정성식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.37-45
    • /
    • 2000
  • The technique of laser sheet beam has been applied to optically accessible diesel engine for the quantitative measurement of soot. The results provide the information for us for reduction of soot in diesel engine. We used both LIS nad LII techniques simultaneously in this study. LIS and LII images show the quantitative distribution of the soot concentration in an optically accessible diesel engine. In this study, several results were obtained by the simultaneous measurement of LIS and LII technique. The diameter and number density of soot in combustion chamber of the test engine were obtained from ATDC 20$^{\circ}$ to 110$^{\circ}$ . The increase rate of soot diameter was about 40$^{\circ}$ between ATDC 20$^{\circ}$and 110$^{\circ}$. And the number density of soot decreased significantly between ATDC 20$^{\circ}$and 40$^{\circ}$.

  • PDF

A Study on the Soot Particle Measurement in Co-Flow Diffusion Flame Using a Laser Diagnostics and a Thermocouple (레이저 및 열전대를 이용한 동축류 확산화염에서의 매연입자 측정에 관한 연구)

  • Han, Yong-Taek;Lee, Ki-Hyng;Lee, Won-Nam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.7
    • /
    • pp.863-870
    • /
    • 2004
  • The temperature and soot particle measurement technique in a laminar diffusion flame has been studied to investigate the characteristics of soot particle with temperature using a co-flow burner. The temperature distribution in the flame were measured by rapid insertion of a R-type thermocouple and the soot particles by LEM/LIS techniques. In these measurement, soot volume fraction, number density and soot diameters were analyzed experimentally. As a results, the spacial distributions of particle volume fraction, soot diameter, and number density are mapped throughout the flame using the Rayleigh theory for the scattering of light by particles. A laser extinction method was used to measure the soot volume fraction and laser induced scattering method was used to measure the soot particle diameter and number density. Also, we measured temperature without the effect of soot particles attached to the thermocouple junction, which is close to the nozzle. In this result, we found that upstream zone has a unstable flowing in co-flow diffusion flame and the y-axis temperature of flame has a uniform temperature distribution in the most soot volume fraction zone.

A Study on the Soot Particle Measurement in Co-flow Diffusion Flame Using a Laser Diagnostics and a Thermocouple (레이저 및 열전대를 이용한 동축류 확산화염에서의 매연입자 측정에 관한 연구)

  • Han, Yong-Taek;Lee, Ki-Hyung;Lee, Won-Nam
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1267-1273
    • /
    • 2004
  • The temperature and soot particle measurement technique in a laminar diffusion flame have been studied to investigate the characteristics of soot particle with temperature using a co-flow burner. The temperature distributions in the flame were measured by rapid insertion of a R-type thermocouple and the soot particles were detected were detected by LEM/LIS techniques. In these measurement, soot volume fraction, number density and soot diameters were analyzed experimentally. As a results, the spacial distributions of particle volume fraction, soot diameter, and number density are mapped throughout the flame using the Rayleigh theory for the scattering of light by absorbing particles. A laser extinction method was used to measure the soot volume fraction and Laser induced scattering method was used to measure the soot particle diameter and number density. Also, we measured temperature without the effect of soot particles attached to the thermocouple junction, which is close to the nozzle. In this result, we found that upstream zone has a unstable flowing in co-flow diffusion flame and the y-axis temperature of flame has a uniform temperature distribution in the most soot volume fraction zone.

  • PDF

The 2D Measurement of Soot Diameter and Number Density in a Diesel Engine Using Laser Induced Methods

  • Lee, Myung-Jun;Yeom, Jung-Kuk;Ha, Jong-Yul;Chung, Sung-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.9
    • /
    • pp.1311-1318
    • /
    • 2001
  • It is necessary to diagnose accurately the characteristics of soot formation and oxidation in a diesel engine. Whereas past measurement techniques for soot concentration give limited information for soot, laser-based two-dimensional imaging diagnostics have a potential to provide temporally and spatially superior resolved measurements of the soot distribution. The technique using laser sheet beam has been applied to an optically accessible diesel engine for the quantitative measurement of soot. The results provided the information for reduction of soot from the diesel engine. Both LIS (Laser Induced Scattering) and LII (Laser Induced Incandescence) techniques were used simultaneously in this study. The images of LIS and LII showed the quantitative distribution of the soot concentration in the diesel engine. In this study, several results were obtained by the simultaneous measurements of LIS and LII technique. The diameter and number density of soot in combustion chamber of the test engine were obtained from ATDC 20 degree to 110 degree. The soot diameter increased about 37% between ATDC 20 degree and 110 degree. The number density of soot, however, decreased significantly between ATDC 40 degree and 70 degree.

  • PDF

An Experimental Study on the Measurement of Soot Contamination in a Diesel Engine Oil (디젤 엔진오일 내 Soot 함량 증가에 따른 오염도 측정에 관한 실험적 고찰)

  • 공호성;조성용;윤의성;한흥구;정동윤
    • Tribology and Lubricants
    • /
    • v.19 no.5
    • /
    • pp.251-258
    • /
    • 2003
  • New method and device for the on-line measurement of soot concentration in a diesel engine oil are proposed, where the measurement principle is based mainly on attenuated internal total reflection. The detector were evaluated in various ranges of contaminated oils by carbon black particles. It was found that the proposed detector could be well used to monitor the oil deterioration due to soot contamination. Operational range of the detector was found from 0 to 5 mass percentage of soot content. Test results with water and fuel dilution showed that these effects were not remarkable. However, adsorption of carbon black particles onto the measurement surface was considered to be a critical problem of the detector. Effects of particle deposition on the interface was experimentally evaluated with the oil temperature and flow turbulence and discussed throughout this work.

An Combustion Diagnosis Using Optical Measurement in D. I Diesel Engine with Dual Fuel Stratified Injection System (이종연료 층상분사를 적용한 디젤엔진에서 광 계측을 이용한 연소해석)

  • An, H.C.;Kang, B.M.;Yeom, J.K.;Chung, S.S.;Ha, J.Y.
    • Journal of ILASS-Korea
    • /
    • v.7 no.3
    • /
    • pp.31-37
    • /
    • 2002
  • In previous study, diesel-methanol stratified injection system is manufactured and applied to a D.I. diesel engine in order to realize combustion improvement using methanol, which is oxygenated fuel with large latent heat. We know that NOx and soot is reduced by stratified injection of diesel fuel-methanol. Therefore, in the present study, combustion diagnosis using optical measurement is tried to make clear effect of methanol on simultaneous reduction of NOx and soot. Two-color method is used to measure flame temperature and KL value, which is approximately proportional to the soot consentration along the optical path. Laser induced scattering method was used to measure distribution of soot at two dimensional area. Also, it is compared exhaust characteristics of NOx and soot with results of optical measurement.

  • PDF

Study on Soot Primary Particle Size Measurement in Ethylene Diffusion Flame by Time-Resolved Laser-Induced Incandescence (시분해 레이저 유도 백열법을 이용한 에틸렌 확산 화염에서의 매연 일차입자크기 측정에 관한 연구)

  • Kim Gyu-Bo;Cho Seung-Wan;Lee Jong-Ho;Jeong Dong-Soo;Chang Young-June;Jeon Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.10 s.253
    • /
    • pp.973-981
    • /
    • 2006
  • Recently there is an increasing interest in particulate matter emission because of new emission regulations, health awareness and environmental problems. It requires to improve particulate measurement techniques as well as to reduce soot emissions from combustion systems. As mentioned above, it is demanded that reduction techniques together with measurement techniques of exhausted particulate matters in combustion systems such as vehicles. However, measurement techniques of particulate matters should be prior to reduction techniques of that because it is able to know an increase and a decrease of exhausted particulate matters when measured particulate matters. Therefore, in this study, we report the measurement of soot primary-particle size using time-resolved laser induced incandescence (TIRE-LII) technique in laminar ethylene diffusion flame. As an optical method, laser induced incandescence is one of well known methods to get information for spatial and temporal soot volume fraction and soot primary particle size. Furthermore, TIRE-LII is able to measure soot primary particle size that is decided to solve the decay ate of signal S $(t_1)$ and S $(t_2)$ at two detection time. In laminar ethylene diffusion flame, visual flame height is 40 mm from burner tip and measurement points are height of 15, 20, 27.5, 30 mm above burner tip along radial direction. As increasing the height of the flame from burne. tip, primary particle size was increased to HAB(Height Above Burner tip)=20mm, and then decreased from HAB=27.5 mm to 30 mm. This results show the growth and oxidation processes for soot particles formed by combustion.

An Experimental Study on the Measurement of Soot Contamination in A Diesel Engine Oil (디젤 엔진오일 내 Soot 함량 증가에 따른 오염도 측정에 관한 실험적 고찰)

  • Jo, Seong-Yong;Gong, Ho-Seong;Yun, Ui-Seong;Han, Heung-Gu;Jeong, Dong-Yun
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.120-129
    • /
    • 2002
  • New method and device for the on-line measurement of soot concentration in a diesel engine oil are proposed, where the measurement principle is based mainly on attenuated internal total reflection. Various laboratory tests of the detector were performed mainly with carbon black particles of different contamination levels. It was found that the proposed detector could be well used to monitor oil deterioration due to soot contamination. Operational range of the detector was found from 0 to 5 mass percentage of soot content. Test results with water and fuel dilution showed that these effects were not remarkable. However, adsorption of carbon black particles to a measurement surface was considered to be a critical problem in the new detector. Effects of particle deposition onto the interface was experimentally evaluated with the oil temperature and turbulence and discussed throughout this work.

  • PDF

Improvement of Soot Probe Efficiency for Automotive Emission Measurement (자동차 배기가스 측정을 위한 매연프로브 효율 개선에 관한 연구)

  • Chae, Il-Seok;Kim, Sang-Yu;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.8
    • /
    • pp.74-81
    • /
    • 2019
  • Cars are inspected in the transport sector for their ability to achieve the greenhouse gas reduction targets. A vehicle (automobile) inspection broadly consists of regular and total checks, and both the safety level and the amount of exhaust gas are checked simultaneously during a vehicle inspection. This study deals with the efficiency of a soot probe to measure soot emissions from diesel vehicles. When the vehicle exhaust gas measurement is performed, there may be a difference between the exhaust gas temperature and the soot suction amount because of the different shape and angle of the exhaust port for each vehicle type. This may result in some incidents where the correct inspection nonconforming vehicle is not selected. Therefore, in this study, the shape of the probe was improved to increase the soot measurement efficiency under the condition of the exhaust pipe angle change.

Tomographic Reconstruction of Asymmetric Soot Structure from Multi-angular Scanning (다각 주사법을 이용한 비대칭 매연분포의 재구성)

  • Lee, S.M.;Hwang, J.Y.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.55-61
    • /
    • 1999
  • A convolution algorithm combined with Fourier transformation is applied to the tomographic reconstruction of the asymmetric soot structure to identify the local soot volume fraction distribution. The line of sight integrated data from light extinction measurement with multi-angular scanning form basic information for the deconvolution. Multi-peak following interpolation technique is applied to obtain the effect of increasing number of scanning angles. Measurement of LII signal for the same flame shows the validity of this reconstruction technigue.

  • PDF