• 제목/요약/키워드: Sonic hedgehog

검색결과 22건 처리시간 0.029초

The Effects of Korean Cucurbitaceous Plants on the Alkaline Phosphatase Activity Associated with Sonic Hedgehog Pathway

  • Lee, Hwa Jin
    • 한국자원식물학회지
    • /
    • 제26권6호
    • /
    • pp.673-677
    • /
    • 2013
  • In order to examine the effects of Korean cucurbitaceous plants on sonic hedgehog pathway and growth of cancer cells with over-activated hedgehog pathway, we measured the sonic hedgehog conditioned medium (shh-CM) induced alkaline phosphatase (ALP) activity and cell viability of pancreatic cancer cell lines by treatment of cucurbitaceous plants. Among the tested cucurbitaceous plants, Actinostemma lobatum Maxim, Cucumis sativus L., Momordica charantia L., Schizopepon bryoniaefolius Maxim and Trichosanthes kirilowii Max, var. japonica Kitam showed the potent inhibitory effects (> 50 % at $20{\mu}g/mL$) on shh-CM induced ALP activity. We also evaluated the cell viability of pancreatic cancer cells treated with the cucurbitaceous plants. The tested cucurbitaceous plants showed the very weak effects on cancer cell proliferation but, T. kirilowii Max, var. japonica Kitam presented the inhibitory effect of 72.7 % on the proliferation of pancreatic cancer cells at $20{\mu}g/mL$. Taken together, we screened the effects of Korean cucurbitaceous plants on shh-CM induced ALP activity and cell viability of pancreatic cancers to search for the modulators of the hedgehog pathway leading to the inhibition of cancer cell proliferation. T. kirilowii Max, var. japonica Kitam, among the tested cucurbitaceous plants, showed the inhibitory effects on the shh-CM induced ALP activity and the proliferation of pancreatic cancer cells.

치근 및 치주조직 형성과정 동안 Sonic Hedgehog signaling의 역할 (Roles of Sonic Hedgehog Signaling During Tooth Root and Periodontium Formation)

  • 황재원;조의식;양연미
    • 대한소아치과학회지
    • /
    • 제45권2호
    • /
    • pp.144-153
    • /
    • 2018
  • 본 연구는 치근 및 치주조직의 형성과정동안 Sonic Hedgehog (SHH) signaling의 역할에 대해 알아보고자 치성간엽에서 조직특이적으로 Smoothened (Smo)가 활성화 또는 차단되는 mouse를 제작하여 분석하였다. 생후 28일경 Smo 활성화모델에서는 H-E 염색 시 얇은 두께의 치근상아질, 넓어진 치수강, 치주인대공간에 느슨하게 배열되어있는 섬유들이 관찰되었다. 면역조직화학염색 시 Smo 활성화모델은 wild type mouse와 비교하여 백악질, 치주인대 그리고/또는 백악모세포의 표식자인 Bsp, Dmp1, Periostin, Ank 같은 기질 단백질들의 발현이 현저히 감소하였다. 그러나 Smo 차단모델은 wild type mouse와 비교하여 이러한 기질 단백질들의 발현에 차이가 보이지 않았다. 본 연구를 통하여 치근 및 치주조직의 정상적인 형성과정에 낮은 수준으로 조절되는 SHH signaling이 필요하다는 것을 확인할 수 있었다.

Identification of Osteogenic Purmorphamine Derivatives

  • Lee, Sung-Jin;Lee, Hak-Kyo;Cho, Sung Yun;Choi, Joong-Kwon;Shin, Hea Kyeong;Kwak, Eun-Jung;Cho, Mi-Ran;Kim, Hye-Ryun;Kim, Seung-Ryol;Kim, Yong-Min;Park, Kyoung-Jin;Choi, Joong-Kook
    • Molecules and Cells
    • /
    • 제26권4호
    • /
    • pp.380-386
    • /
    • 2008
  • During embryonic and cancer development, the Hedgehog family of proteins, including Sonic Hedgehog, play an important role by relieving the inhibition of Smo by Ptc, thus activating the Smo signaling cascade. Recently, a purine compound, purmorphamine, has been reported to target the Hedgehog signaling pathway by interacting with Smo. Interestingly, both Sonic Hedgehog and purmorphamine were found to promote the osteogenic differentiation of mouse chondroprogenitor cells. However, there is insufficient information as to how the activation of this seemingly unrelated signaling pathway, either by Sonic Hedgehog or purmorphamine, contributes to osteogenesis. Using alkaline phosphatase assays, we screened 125 purmorphamine derivatives from the Korea Chemical Bank for effects on the differentiation of preosteoblast C2C12 cells. Here, we report that two purine derivatives modulate ALP activity as well as the expression of genes whose expression is known or suggested to be involved in osteogenesis.

The role of sonic hedgehog signaling pathway in in vitro oocyte maturation

  • Lee, Sanghoon;Cho, Jongki
    • 한국동물생명공학회지
    • /
    • 제36권4호
    • /
    • pp.183-188
    • /
    • 2021
  • In vitro maturation (IVM) of oocytes is the procedure where the immature oocytes are cultivated in a laboratory until they are mature. Since IVM oocytes generally have low developmental competence as compared to those matured in vivo, development of an optimal IVM culture system by fine-tuning culture conditions is crucial to maintain high quality. In-depth knowledge and a deep understanding of the in vivo physiology of oocyte maturation are pre-requisites to accomplish this. Within ovarian follicles, various signaling pathways that drive oocyte development and maturation regulate interaction between oocytes and surrounding somatic cells. This review discusses the sonic hedgehog (SHH) signaling pathway, which has been demonstrated to be intimately involved in folliculogenesis and oocyte maturation. Advances in elucidating the role of the SHH signaling pathway in oocyte maturation will aid attempts to improve the current inferior in vitro oocyte maturation system.

Methanol Extract of Cinnamomum cassia Represses Cellular Proliferation and Gli-mediated Transcription in PANC-1 Human Pancreatic Cancer Cells

  • Lee, Hwa Jin
    • Natural Product Sciences
    • /
    • 제20권3호
    • /
    • pp.170-175
    • /
    • 2014
  • Twenty five methanolic plant extracts were investigated to determine the anticancer activity against sonic hedgehog (shh)/Gli signaling pathway dependent cancer, PANC-1 human pancreatic cancer cells, through three screening programs. All extracts were inspected their inhibitory properties on sonic hedgehog-conditioned medium (shh-CM) induced alkaline phosphatase (ALP) activity in C3H10T1/2 mouse mesenchymal stem cells to examine whether the plant extracts affect the shh/Gli signaling pathway. Next, plant extracts were screened the ability to suppress the cell proliferation of PANC-1 human pancreatic cancer cells. Finally, active plant extracts from the two screening systems were evaluated for the suppressive effect on Gli-mediated transcriptional activity in PANC-1 cells. Among active plants, Cinnamomum cassia suppressed Gli-mediated transcriptional activity leading to the down-regulated expression of Gli-target genes such as Gli-1 and Patched-1 (Ptch-1). This study provides the consideration for the important role of natural products in drug discovery process as well as the basis for the further analysis of active plant and potential identification of novel bioactive compounds as inhibitors of Gli and therapeutic candidates against shh/Gli signaling pathway dependent cancers.

Establishment of a Pancreatic Cancer Stem Cell Model Using the SW1990 Human Pancreatic Cancer Cell Line in Nude Mice

  • Pan, Yan;Gao, Song;Hua, Yong-Qiang;Liu, Lu-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권2호
    • /
    • pp.437-442
    • /
    • 2015
  • Aim: To establish a pancreatic cancer stem cell model using human pancreatic cancer cells in nude mice to provide a platform for pancreatic cancer stem cell research. Materials and Methods: To establish pancreatic cancer xenografts using human pancreatic cancer cell line SW1990, nude mice were randomly divided into control and gemcitabine groups. When the tumor grew to a volume of $125mm^3$, they treated with gemcitabine at a dose of 50mg/kg by intraperitoneal injection of 0.2ml in the gemcitabine group, while the mice in control group were treated with the same volume of normal saline. Gemcitabine was given 2 times a week for 3 times. When the model was established, the proliferation of pancreatic cancer stem cells was observed by clone formation assay, and the protein and/or mRNA expression of pancreatic stem cell surface markers including CD24, CD44, CD133, ALDH, transcription factors containing Oct-4, Sox-2, Nanog and Gli, the key nuclear transcription factor in Sonic Hedgehog signaling pathway was detected by Western blot and/or RT-PCR to verify the reliability of this model. Results: This model is feasible and safe. During the establishment, no mice died and the weight of nude mice maintained above 16.5g. The clone forming ability in gemcitabine group was stronger than that of the control group (p<0.01). In gemcitabine group, the protein expression of pancreatic cancer stem cell surface markers including CD44, and ALDH was up-regulated, the protein and mRNA expression of nuclear transcription factor including Oct-4, Sox-2 and Nanog was also significantly increased (P<0.01). In addition, the protein expression of key nuclear transcription factor in Sonic Hedgehog signaling pathway, Gli-1, was significantly enhanced (p<0.01). Conclusions: The pancreatic cancer stem cell model was successfully established using human pancreatic cancer cell line SW1990 in nude mice. Gemcitabine could enrich pancreatic cancer stem cells, simultaneously accompanied by the activation of Sonic Hedgehog signaling pathway.

Chemoquiescence with Molecular Targeted Ablation of Cancer Stem Cells in Gastrointestinal Cancers

  • Jong-Min Park;Young-Min Han;Migyeong Jeong;Eun Jin Go;Napapan Kangwan;Woo Sung Kim;Ki Baik Hahm
    • Journal of Digestive Cancer Research
    • /
    • 제4권1호
    • /
    • pp.1-9
    • /
    • 2016
  • The abundance of multi-drug resistance ATPase binding cassette and deranged self-renewal pathways shown in cancer stem cells (CSCs) played a crucial role in tumorigenesis, tumor resistance, tumor recurrence, and tumor metastasis. Therefore, elucidation of CSCs biology can improve diagnosis, enable targeted treatment, and guide the follow up of GI cancer patients. In order to achieve chemoquiescence, seizing cancer through complete ablation of CSCs, CSCs are rational targets for the design of interventions that will enhance responsiveness to traditional therapeutic strategies and contribute in the prevention of local recurrence as well as metastasis. However, current cancer treatment strategies fail to either detect or differentiate the CSCs from their non-tumorigenic progenies mostly due to the absence of specific biomarkers and potent agents to kill CSCs. Recent advances in knowledge of CSCs enable to produce several candidates to ablate CSCs in gastrointestinal (GI) cancers, especially cancers originated from inflammation-driven mutagenesis such as Barrett's esophagus (BE), Helicobacter pylori-associated gastric cancer, and colitis-associated cancer (CAC). Our research teams elucidated through revisiting old drugs that proton pump inhibitor (PPI) and potassium competitive acid blocker (p-CAB) beyond authentic acid suppression, chloroquine for autophage inhibition, sonic hedgehog (SHH) inhibitors, and Wnt/β-catenin/NOTCH inhibitor can ablate CSCs specifically and efficiently. Furthermore, nanoformulations of these molecules could provide an additional advantage for more selective targeting of the pathways existing in CSCs just like current molecular targeted therapeutics and sustained action, while normal stem cells intact. In this review article, the novel approach specifically to ablate CSCs existing in GI cancers will be introduced with the introduction of explored mode of action.

  • PDF

인간 제대혈액에서 유래된 중간엽 줄기세포의 신경 및 콜린성 분화 (Neural and Cholinergic Differentiation of Mesenchymal Stem Cells Derived from the Human Umbilical Cord Blood)

  • 감경윤;강지혜;도병록;김해권;강성구
    • 한국발생생물학회지:발생과생식
    • /
    • 제11권3호
    • /
    • pp.235-243
    • /
    • 2007
  • 인간 제대혈 세포는 조혈모세포, 중간엽 줄기세포와내피전구세포를 풍부하게 포함하고 있다. 인간 제대혈 속의 중간엽 줄기세포는 조혈모세포와는 달리 다능성 줄기세포이며 신경세포로 분화할 수 있는 잠재성을 가지고 있다. 본 연구에서는 세포배양을 통해 제대혈의 중간엽 줄기세포를 신경세포와 콜린성 신경세포로 분화를 유도하였다. 중간엽 줄기세포를 신경세포로 분화시키기 위해 배양액에 dimethyl sulphoxide(DMSO)와 butylated hydroxyanisole(BHA)를 첨가하여 유도하였으며 basic fibroblast growth factor(bFGF), retinoic acid(RA), sonic hedgehog(Shh)를 처리하여 콜린성 신경세포로 분화시켰다. DMSO와 BHA에 처리된 중간엽 줄기세포가 빠르게 신경세포 모양으로 분화하는 것을 관찰하였으며, 이것은 면역조직학적 염색에서 신경세포 특이 표지인 $\beta$-tubulin III, 별아교세포에 대한 특이 표지인 GFAP, 희돌기아교세포에 대한 특이 표지인 Gal-C에 대해 양성반응을 나타내었고, 그 비율은 각각 $32.3{\pm}2.9%$, $11.0{\pm}0.9%,\;9.4{\pm}1.0%$였다. RT-PCR 분석에서 배양 단계에 따라 신경세포에 특이적인 표지 인자가 발현됨을 통해, 중간엽 줄기세포가 신경세포로 분화됨을 확인하였다. 또한, 중간엽 줄기세포에 bFGF, RA, Shh를 처리하여 콜린성 신경세포로 분화시켰을 때, 전체 중간엽 세포 중 $31.3{\pm}3.2%$가 신경세포 특이 표지인 $\beta$-tubulin III에 양성반응을 보였으며 이들 세포 중 $70.0{\pm}7.8%$가 콜린성 신경 특이 표지인 ChAT에 양성반응을 보였고, 이것은 Woodbury 방법에 의한 신경분화의 경우보다 3배 가량 높은 비율로 콜린성 신경의 분화를 유도한 것이다. 이러한 실험 결과들은 인간 제대혈의 중간엽 줄기세포가 콜린성 신경세포로 분화가 가능하고 이러한 잠재성을 가진 제대혈 중간엽 줄기세포는 퇴행성 신경질환에 대한 세포 치료제로서 가능성을 제시한다.

  • PDF

바이오 안테나인 일차 섬모 조절을 통한 피부 미백 기술 (Primary Cilia, A Novel Bio-target to Regulate Skin Pigmentation)

  • 최현정;박녹현;김지현;조동형;이태룡;김형준
    • 대한화장품학회지
    • /
    • 제44권1호
    • /
    • pp.73-79
    • /
    • 2018
  • 일차 섬모(primary cilia)는 세포에서 안테나처럼 돌출되어 나온 기관인데, 외부 자극에 반응할 수 있는 각종 수용체와 채널, 신호 전달 인자들을 가지고 있다. 피부는 자외선, 온도, 습도, 중력, 장력 등 외부 환경에 반응하여 멜라닌이나 콜라겐을 만들고 피부 장벽을 형성한다. 피부에서는 일차 섬모가 없으면 헤어의 생성이나 각질의 분화가 억제된다는 보고가 있다. 또한 피부 색소 생성과 관련하여서는 일차 섬모가 sonic hedgehog-smoothened-GLI2 신호 전달에 의해 활성화되면 멜라닌 생성이 억제된다는 것이 알려져 있다. 피부가 자외선을 받으면 멜라닌 생성 호르몬의 양이 증가하고 멜라닌 생성 호르몬은 멜라닌 생성 세포 내 cAMP의 양을 증가시켜 멜라닌 생성 효소의 발현을 높인다. 이에 멜라닌 생성 호르몬과 세포 내 cAMP의 양을 증가시키는 물질을 처리하여 멜라닌 생성을 높였을 때 일차 섬모의 변화를 확인한 결과 일차 섬모가 감소하는 것을 확인하였다. 또한 기존 미백 원료인 유용성 감초 추출물(an ethanol extract of Glycyrrhiza glabra (EGG) root)과 Melasolv (3,4,5-trimethoxy cinnamate thymol ester (TCTE))가 일차 섬모의 발현을 증가시키고 멜라닌 생성 효소인 tyrosinase의 발현을 억제함을 확인할 수 있었다. 따라서 일차 섬모를 조절할 수 있다면 피부 색소 침착을 효과적으로 조절할 수 있을 것이다.