• Title/Summary/Keyword: Sonar Signal Processing

Search Result 86, Processing Time 0.027 seconds

Real data-based active sonar signal synthesis method (실데이터 기반 능동 소나 신호 합성 방법론)

  • Yunsu Kim;Juho Kim;Jongwon Seok;Jungpyo Hong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.9-18
    • /
    • 2024
  • The importance of active sonar systems is emerging due to the quietness of underwater targets and the increase in ambient noise due to the increase in maritime traffic. However, the low signal-to-noise ratio of the echo signal due to multipath propagation of the signal, various clutter, ambient noise and reverberation makes it difficult to identify underwater targets using active sonar. Attempts have been made to apply data-based methods such as machine learning or deep learning to improve the performance of underwater target recognition systems, but it is difficult to collect enough data for training due to the nature of sonar datasets. Methods based on mathematical modeling have been mainly used to compensate for insufficient active sonar data. However, methodologies based on mathematical modeling have limitations in accurately simulating complex underwater phenomena. Therefore, in this paper, we propose a sonar signal synthesis method based on a deep neural network. In order to apply the neural network model to the field of sonar signal synthesis, the proposed method appropriately corrects the attention-based encoder and decoder to the sonar signal, which is the main module of the Tacotron model mainly used in the field of speech synthesis. It is possible to synthesize a signal more similar to the actual signal by training the proposed model using the dataset collected by arranging a simulated target in an actual marine environment. In order to verify the performance of the proposed method, Perceptual evaluation of audio quality test was conducted and within score difference -2.3 was shown compared to actual signal in a total of four different environments. These results prove that the active sonar signal generated by the proposed method approximates the actual signal.

Target Range Estimation Method using Ghost Target in the Submarine Linear Array Sonar (잠수함 선배열소나의 허위표적 정보를 이용한 표적의 거리추정 기법)

  • Choi, Byungwoong;Kim, Kyubaek
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.532-537
    • /
    • 2015
  • In this paper, we propose target range estimation method using ghost target in the submarine linear array sonar. Usually, when submarine detect target, they use passive sonar detection to avoid self-disclosure by active sonar transmission. But, originally, passive linear array sonar have limitation for target range estimation and additional processing is required to get target range information. For the case of near-field target, typical range estimation method is using multiple information by multipath effect in underwater environment. Acoustic signal generated from target are propagated along with numerous multipath in underwater environment. Since multipath target signals received in the linear array sonar have different conic angles each other, ghost target is appeared at the bearing different with real target bearing and sonar operator can find these information on the operation console. Under several assumption, this geometric properties can be analysed mathematically and we get the target range by derivation of this geometric equations using measured conic angles of real target and ghost target.

Reverberation suppression algorithm for continuous-wave active sonar system based on overlapping nonnegative matrix factorization (중첩 비음수 행렬 분해 기법에 기반한 지속파 능동 소나의 잔향 신호 제거 기법)

  • Lee, Seokjin;Lim, Jun-Seok;Cheong, Myoung Jun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.4
    • /
    • pp.273-278
    • /
    • 2017
  • In this paper, a post-processing algorithm to suppress reverberation for continuous-wave active sonar system is developed. The developed algorithm is designed for a low-doppler environment where the target echo is not distinguishable from the reverberation. The algorithm is developed based on overlapping nonnegative matrix factorization method. The algorithm analyzes the frequency characteristics of transmitting ping signal, then suppresses the reverberation using time-frequency characteristics of the received signal. Simulations performed in order to evaluate the proposed algorithm, and the results show that the proposed algorithm makes 6 dB signal-to-reverberation ratio enhancement in various reverberation energy conditions.

Multi-aspect Based Active Sonar Target Classification (다중 자세각 기반의 능동소나 표적 식별)

  • Seok, Jongwon
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.10
    • /
    • pp.1775-1781
    • /
    • 2016
  • Generally, in the underwater target recognition, feature vectors are extracted from the target signal utilizing spatial information according to target shape/material characteristics. In addition, various signal processing techniques have been studied to extract feature vectors which are less sensitive to the location of the receiver. In this paper, we synthesized active echo signals using 3-dimensional highlight distribution. Then, Fractional Fourier transform was applied to echo signals to extract signal features. For the performance verification, classification experiments were performed using backpropagation and probabilistic neural network classifiers based on single aspect and multi-aspect method. As a result, we obtained a better recognition result using proposed feature extraction and multi-aspect based method.

Implementation of Sonar Bearing Accuracy Measurement Equipment with Parallax Error and Time Delay Error Correction (관측위치오차와 시간지연오차를 보정하는 소나방위정확도 측정 장비 구현)

  • Kim, Sung-Duk;Kim, Do-Young;Park, Gyu-Tae;Shin, Kee-Cheol
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.4
    • /
    • pp.245-251
    • /
    • 2019
  • Sonar bearing accuracy is the correspondence between the target orientation predicted by sonar and actual target orientation, and is obtained from measurements. However, when measuring sonar bearing accuracy, many errors are included in the results because they are made at sea, where complex and diverse environmental factors are applied. In particular, parallax error caused by the difference between the position of the GPS receiver and the sonar sensor, and the time delay error generated between the speed of underwater sound waves and the speed of electromagnetic waves in the air have a great influence on the accuracy. Correcting these parallax errors and time delay errors without an automated tool is a laborious task. Therefore, in this study, we propose a sonar bearing accuracy measurement equipment with parallax error and time delay error correction. The tests were carried out through simulation data and real data. As a result of the test it was confirmed that the parallax error and time delay error were systematically corrected so that 51.7% for simulation data and more than 18.5% for real data. The proposed method is expected to improve the efficiency and accuracy of sonar system detection performance verification in the future.

Deterministic Function Variable Step Size LMS Algorithm (결정함수 가변스텝 LMS 알고리즘)

  • Woo, Hong-Chae
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.2
    • /
    • pp.128-132
    • /
    • 2011
  • Least mean square adaptive algorithms have played important role in radar, sonar, speech processing, and mobile communication. In mobile communication area, the convergence rate of a LMS algorithm is quite important. However, LMS algorithms have slow and non-uniform convergence rate problem For overcoming these shortcomings, various variable step LMS adaptive algorithms have been studied in recent years. Most of these recent LMS algorithms have used complex variable step methods to get a rapid convergence. But complex variable step methods need a high computational complexity. Therefore, the main merits such as the simplicity and the robustness in a LMS algorithm can be eroded. The proposed deterministic variable step LMS algorithm is based upon a simple deterministic function for the step update so that the simplicity of the proposed algorithm is obtained and the fast convergence is still maintainable.

A Study on Signal Parameters Estimation via Nonlinear Minimization

  • Jeong, Jung-Sik
    • Journal of Navigation and Port Research
    • /
    • v.28 no.4
    • /
    • pp.305-309
    • /
    • 2004
  • The problem for parameters estimation of the received signals impinging on array sensors has long been of great research Interest in a great variety of applications, such as radar, sonar, and land mobile communications systems. Conventional subspace-based algorithms, such as MUSIC and ESPRIT, require an extensive computation of inverse matrix and eigen-decomposition In this paper, we propose a new parameters estimation algorithm via nonlinear minimization, which is simplified computationally and estimates signal parameters simultaneously.

GPU-based Acceleration of Particle Filter Signal Processing for Efficient Moving-target Position Estimation (이동 목표물의 효율적인 위치 추정을 위한 파티클 필터 신호 처리의 GPU 기반 가속화)

  • Kim, Seongseop;Cho, Jeonghun;Park, Daejin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.5
    • /
    • pp.267-275
    • /
    • 2017
  • Time of difference of arrival (TDOA) method using passive sonar sensor array has normally been used to estimate the location of a concealed moving target in underwater environment. Particle filter has been introduced for effective target estimation for non-Gaussian and nonlinear systems. In this paper, we propose a GPU-based acceleration of target position estimation using particle filter and propose efficient embedded system and software architecture. For the TDOA measurement from the passive sonar sensor, we use the generalized cross correlation phase transform (GCC-PHAT) method to obtain the correlation coefficient of the signal using FFT and we try to accelerate the calculation of GCC-PHAT based TDOA measurements using FFT with GPU CUDA. We also propose parallelization method of the target position estimation algorithm using the GPU CUDA to update the state of each particle for the target position estimation using the measured values. The target estimation algorithm was verified using Matlab and implemented using GPU CUDA. Then, we realized the proposed signal processing acceleration system using NVIDIA Jetson TX1 as the target board to analyze in terms of the execution time. The execution time of the algorithm is reduced by 55% to the CPU standalone-operation on the target board. Experiment results show that the proposed architecture is a feasible solution in terms of high-performance and area-efficient architecture.

An Introduction to the Underwater Survey Operations using a Side Scan Sonar System (천해역 해저탐사 및 영상분석 기법 소개)

  • 주영석;우종식
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.156-159
    • /
    • 2001
  • Recently, side scan sonar system has been developed and operated to survey cable laying, sunken bodies, geometry of sea bottom and so on. It uses the acoustic signals, which are emitted from two transducer arrays, left and right sides, to get geometric information of the specified area. This system consists of transceiver board, towed body, deck unit and GPS receiver. The transceiver board, nested in a watertight canister, controls the transmitting and receiving of the acoustic pulses from transducer arrays. After receiving the scattered signals, it processes BP(Band Pass) filtering, AGC(Automatic Gain Control), TVG(Time Varying Gain) and Heterodyne. The deck init has the signal processing part, A/D converter, power supplier, and real-time monitoring part. The towed body has been designed to satisfy the optimal hydrodynamic behavior during towing, In this paper, brief introductions on the design theory of transceiving part and some results from the field which have been operated recently will be introduced.

  • PDF

Design of Parallel Algorithms for Conventional Matched-Field Processing over Array of DSP Processors (다중 DSP 프로세서 기반의 병렬 수중정합장처리 알고리즘 설계)

  • Kim, Keon-Wook
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.4 s.316
    • /
    • pp.101-108
    • /
    • 2007
  • Parallel processing algorithms, coupled with advanced networking and distributed computing architectures, improve the overall computational performance, dependability, and versatility of a digital signal processing system In this paper, novel parallel algorithms are introduced and investigated for advanced sonar algorithm, conventional matched-field processing (CMFP). Based on a specific domain, each parallel algorithm decomposes the sequential workload in order to obtain scalable parallel speedup. Depending on the processing requirement of the algorithm, the computational performance of the parallel algorithm reveals different characteristics. The high-complexity algorithm, CMFP shows scalable parallel performance on the array of DSP processors. The impact on parallel performance due to workload balancing, communication scheme, algorithm complexity, processor speed, network performance, and testbed configuration is explored.