• Title/Summary/Keyword: Somatosensory

Search Result 219, Processing Time 0.029 seconds

Neuroscientific Review on Sensory Stimulation Therapy and Virtual Reality for Somatosensory Rehabilitation

  • Kim, Tae-Hoon;Kim, Yo-Seob
    • International Journal of Contents
    • /
    • v.6 no.1
    • /
    • pp.53-58
    • /
    • 2010
  • This study details the neuroscientific concept of somatosensation, general sensory stimulation therapy and virtual reality therapy. Somatosensation is a method that the human body uses to accept information from the inner and outer parts of the body. A traditional sensory stimulation therapy was designed to maximize neural recovery, but the neural recovery is most effective when the therapeutic environment is similar to real life. The virtual reality provides natural environment that users may perceive as meaningful and even participants with significant impairment can perform some of the activities of their daily lives within the virtual environment. The virtual reality will become a complementary part of somatosensory rehabilitation.

Altered synaptic connections and inhibitory network of the primary somatosensory cortex in chronic pain

  • Kim, Yoo Rim;Kim, Sang Jeong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.2
    • /
    • pp.69-75
    • /
    • 2022
  • Chronic pain is induced by tissue or nerve damage and is accompanied by pain hypersensitivity (i.e., allodynia and hyperalgesia). Previous studies using in vivo two-photon microscopy have shown functional and structural changes in the primary somatosensory (S1) cortex at the cellular and synaptic levels in inflammatory and neuropathic chronic pain. Furthermore, alterations in local cortical circuits were revealed during the development of chronic pain. In this review, we summarize recent findings regarding functional and structural plastic changes of the S1 cortex and alteration of the S1 inhibitory network in chronic pain. Finally, we discuss potential neuromodulators driving modified cortical circuits and suggest further studies to understand the cortical mechanisms that induce pain hypersensitivity.

Effect of electro-acupuncture ST36 on altered transmission of afferent somatosensory information caused by amyloid-β (전침(電鍼)이 amyloid-β에 의한 구심성 체감각 신경정보전달 변화에 미치는 영향)

  • Lee, Hyun-jong;Kim, Chang-hwan;Lee, Yun-ho
    • Journal of Acupuncture Research
    • /
    • v.20 no.4
    • /
    • pp.145-156
    • /
    • 2003
  • Objective : This study is to investigate the effect of electro-acupuncture ST36 on altered transmission of afferent somatosensory information caused by amyloid-${\beta}$(A-${\beta}$) that caused Alzheimer's disease. Methods : The effects of topical application of A-${\beta}$, A-${\beta}$ with ST36, aggregated A-${\beta}$(aA-${\beta}$), aA-${\beta}$ with ST36 and ST36 on the afferent sensory transmission to the neurons in the primary somatosensory(SI) cortex was observed in anesthetized rats. Quantitative determination of the effects of A-${\beta}$, A-${\beta}$ with ST36, aA-${\beta}$, aA-${\beta}$ with ST36 and ST36 was made by generating poststimulus time histogram of evoked response of individual cortical neuron by electrical stimulation of the receptive located in peripheral area(forepaw) Results : The results obtained in present study were summerized as follow : 1. Application of physiological concentrative 0.5 nM A-${\beta}$ caused afferent sensory transmission of SI cortex facilitated. 0.5 nM A-${\beta}$ with ST36 exerted much stronger effects than 0.5 nM A-${\beta}$ alone. 2. Application of $10{\mu}M$ A-${\beta}$ caused afferent sensory transmission of SI cortex unchangeable. But $10{\mu}M$ A-${\beta}$ with ST36 is facilitated at 30 min of post-drug period 3. Application of $10{\mu}M$ aA-${\beta}$ caused afferent sensory transmission of SI cortex diminished. $10{\mu}M$ aA-${\beta}$ with ST36 is diminished after 15min of post-drug period but is facilitated after 75min.

  • PDF

The Concepts of Montage in Somatosensory Evoked Potentials (체성감각 유발 전위에서 montage에 대한 개념)

  • Cha, Jae-Kwan;Kim, Seung-Hyun
    • Annals of Clinical Neurophysiology
    • /
    • v.1 no.2
    • /
    • pp.160-167
    • /
    • 1999
  • Although somatosensory evoked potentials(SSEPs) have been utilized as the useful diagnostic tools in evaluating the wide variety of pathological conditions, such as focal lesions affecting the somatosensory pathways, demyelinating diseases, and detecting the clinically occult abnormality, their neural generators is still considerably uncertain. To appreciate the basis for uncertainties about the origins of SSEPs, consider criteria that must be met to establish a causal relationship between activity in a neural structure and a spine/ scalp-recorded potential. Electrode locations and channel derivations for SSEPs recordings are based on two principles:(1) the waveforms are best recorded from electrode sites on the body surface closest to the presumed generator sources along the somatosensory pathways, and(2) studies of the potential-field distribution of each waveform of interest dictate the best techniques to be used. In this article, authors will describe followings focused on ;(1) the concepts of near field potentials(NFPs) and far field potentials(FFPs) - the voltage of NFPs is highly dependent upon recording electrode position, FFPs are unlike NFPs in that they are widely distributed, their latencies and amplitudes are independent of recording electrode.(2) appropriate montage settings to detect the significant potentials in the median nerve and posterior tibial nerve SSEPs(3) neural generators of various potentials(P9, N13, P14, N18, N20, P37) and their clinical significance in interpretating the results of SSEPs. Especially, Characteristics of N18(longduration, small superimposed inflection) suggested that N18 is a complex wave with multiple generators including brainstem structures and thalamic nuclei. And N18 might be used as the parameter of braindeath. Precise understanding on these facts provide an adequate basis utilizing SSEPs for numerous clinical purposes.

  • PDF

Cocaine-induced Changes in Functional Connectivities between Simultaneously Recorded Single Neurons in the SI Cortex and the VPL Thalamus of Conscious Rats

  • Shin, Hyung-Cheul;Park, Hyoung-Jin;Oh, Yang-Seok;Chapin, John K.
    • The Korean Journal of Physiology
    • /
    • v.27 no.1
    • /
    • pp.79-91
    • /
    • 1993
  • The present study was carried out to determine the effects of cocaine (0.25, 1.0, 10.0 mg/kg, i.p.) on the interactions between spontaneously active neurons within ensembles of simultaneously recorded neurons in the primary somatosensory cortex (Sl, n= 20) and the ventroposterolateral (VPL, n= 16) thalamic nucleus of awake rats. Spike triggered cross correlation histograms were constructed between pairs of simultaneously recorded neurons. Among 101 neuronal pairs analyzed, 22.7% showed correlations indicative of various functional connections among the cortical cells, two corticothalamic interactions and one thalamocortical excitatory interaction. There were also 15 cofiring activities among SI cortical cells. These functional connectivities appeared to be modulated (weakened, abolished, or strengthened) during the 5 to 30 min following cocaine injection. The effects of saline were tested as a control, but it did not appear to alter the functional connectivities. In general, cocaine-induced changes of the functional interactions were mainly due to the concomitant alterations of the uncorrelated background discharges. These results suggest that the biphasic effects of cocaine on the spontaneously established neural networks among the SI cortical and the VPL thalamic cells of conscious rat were mainly indirect. However, various changes of the functional interactions by different doses of cocaine appeared to be a possible neural network mechanism for the cocaine induced modulation of afferent somatosensory transmission.

  • PDF

Neurophysiology of the Sensory System and Clinical Applications (감각신경계의 신경생리와 임상적 이용)

  • Seo, Dae-Won
    • Annals of Clinical Neurophysiology
    • /
    • v.12 no.2
    • /
    • pp.35-46
    • /
    • 2010
  • Various electrophysiological tests have provided a large body of valuable information on neuronal responses to a presented stimulus. The special and general somatic sensory pathways are main targets of evoked potentials. Two types of evoked potentials, exogenous and endogenous, are commonly used. Exogenous evoked potentials of general and special somatic sensory systems will be reviewed. One of general somatic sensory functional pathways, proprioception, can be evaluated by general somatosensory evoked potentials with electrical stimulation on nerves. The special somatosensory functional pathways, including vision, and audition, can be evaluated by visual evoked potentials and auditory evoked potentials. Also laser-evoked potentials are newly developed for pain pathway, including lateral spinothalamic pathway, and vestibular myogenic evoked potentials for sacculocollic pathways. The evoked potentials of sensory system have maximal clinical utility in evaluating functional deficits along the sensory pathways. They are used for evaluating comatose patients, hysterical patients, premature infants, patients with suspected demyelinating diseases or neoplasms, and research. We discuss the neurophysiologic tests of sensory systems in views of practical points. The organized evaluation of sensory electrophysiologic tests can be helpful in detecting and estimating the abnormalities in neurological diseases.

Muscle Tone and Somatosensory System acting on This (근육긴장도와 이에 영향을 미치는 체성감각계에 관한 고찰)

  • Kim Joong-Hwi;Kwon Yong-Hyun;Park Jung-Mi;Kim Chung-Sun
    • The Journal of Korean Physical Therapy
    • /
    • v.15 no.2
    • /
    • pp.85-99
    • /
    • 2003
  • Muscle tone is the force with which a muscle resists being lengthened. Muscle tone is often tested clinically by passively extending and flexing a relaxed patient's limbs and feeling the resistance offered by the muscle. Both nonneural and neural mechanism contribute to muscle tone. Muscle tone is the mechanisms that contribute to the generation of tone in individual muscles when a person is in a relaxed state. This background level of activity changes in a certain antigravity posture muscle when we stand upright, thus counteracting the force of gravity. This increased level of activity in antigravity muscles is known as postural tone. The evidence from experiments showing that lesions of the dorsal(sensory) roots of the spinal cord reduced muscle(postural) tone is influenced by inputs from the somatosensory system. Patients with neurological damage have several state of muscle(postural) tone, which display from flaccidity to rigidity. This review article deal with muscle tone and somatosensory system acting on this. The understanding about this contribute to a better therapeutic approach for the rehabilitation of patients to have an abnormal muscle(postural) tone due to neurological damage.

  • PDF

Interhemispheric Modulation on Afferent Sensory Transmission to the Ventral Posterior Medial Thalamus by Contralateral Primary Somatosensory Cortex

  • Jung, Sung-Cherl;Choi, In-Sun;Cho, Jin-Hwa;Kim, Ji-Hyun;Bae, Yong-Chul;Lee, Maan-Gee;Shin, Hyung-Cheul;Choi, Byung-Ju
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.3
    • /
    • pp.129-132
    • /
    • 2004
  • Single unit responses of the ventral posterior medial (VPM) thalamic neurons to stimulation were monitored in anesthetized rats during activation of contralateral primary somatosensory (SI) cortex by GABA antagonist. The temporal changes of afferent sensory transmission were quantitatively analyzed by poststimulus time histogram (PSTH). Mainly, afferent sensory transmission to VPM thalamus was facilitated (15 neurons of total 23) by GABA antagonist (bicuculline) applied to contralateral cortex, while 7 neurons were suppressed. However, when ipsilateral cortex was inactivated by GABA agonist, musimol, there was significant suppression of afferent sensory transmission of VPM thalamus. This suppressed responsiveness by ipsilateral musimol was not affected by bicuculline applied to contralateral cortex. These results suggest that afferent transmission to VPM thalamus may be subjected to the interhemispheric modulation via ipsilateral cortex during inactivation of GABAergic neurons in contralateral SI cortex.

Estimating Neuro-Pathway from Visual and Somatosensory Evoked Potential (유발전위를 이용한 뇌의 시감각 및 체성감각 인지영역 추정기술)

  • 배병훈;김동우
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.481-488
    • /
    • 1994
  • In this paper a study of neuro-pathway estimation based on visual and somatosensory evoked potential is given. The evoked potentials which are caused by visual and somatosensory stimulation are detected by an average method. The forward problem that is estimating a scalp potential from a given electrical source in the brain is solved by using a triple concentric spherical shell model of the head and a single current dipole model of the neuron activity. The inverse problem which calculates a source position is solved by a least square fit between the model predicted potential and a given evoked potential measurement. The similarities between estimated sensory neuro-pathways and physiological brain function regions are verified.

  • PDF