Browse > Article
http://dx.doi.org/10.4196/kjpp.2022.26.2.69

Altered synaptic connections and inhibitory network of the primary somatosensory cortex in chronic pain  

Kim, Yoo Rim (Departments of Physiology, Seoul National University College of Medicine)
Kim, Sang Jeong (Departments of Physiology, Seoul National University College of Medicine)
Publication Information
The Korean Journal of Physiology and Pharmacology / v.26, no.2, 2022 , pp. 69-75 More about this Journal
Abstract
Chronic pain is induced by tissue or nerve damage and is accompanied by pain hypersensitivity (i.e., allodynia and hyperalgesia). Previous studies using in vivo two-photon microscopy have shown functional and structural changes in the primary somatosensory (S1) cortex at the cellular and synaptic levels in inflammatory and neuropathic chronic pain. Furthermore, alterations in local cortical circuits were revealed during the development of chronic pain. In this review, we summarize recent findings regarding functional and structural plastic changes of the S1 cortex and alteration of the S1 inhibitory network in chronic pain. Finally, we discuss potential neuromodulators driving modified cortical circuits and suggest further studies to understand the cortical mechanisms that induce pain hypersensitivity.
Keywords
Chronic pain; Cortical circuit; Inhibitory network; Neuropathic pain; Primary somatosensory cortex;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Waterhouse BD, Mouradian R, Sessler FM, Lin RC. Differential modulatory effects of norepinephrine on synaptically driven responses of layer V barrel field cortical neurons. Brain Res. 2000;868:39-47.   DOI
2 Devilbiss DM, Waterhouse BD. Norepinephrine exhibits two distinct profiles of action on sensory cortical neuron responses to excitatory synaptic stimuli. Synapse. 2000;37:273-282.   DOI
3 Salgado H, Garcia-Oscos F, Patel A, Martinolich L, Nichols JA, Dinh L, Roychowdhury S, Tseng KY, Atzori M. Layer-specific noradrenergic modulation of inhibition in cortical layer II/III. Cereb Cortex. 2011;21:212-221.   DOI
4 Lamour Y, Willer JC, Guilbaud G. Rat somatosensory (SmI) cortex: I. Characteristics of neuronal responses to noxious stimulation and comparison with responses to non-noxious stimulation. Exp Brain Res. 1983;49:35-45.
5 Endo T, Spenger C, Hao J, Tominaga T, Wiesenfeld-Hallin Z, Olson L, Xu XJ. Functional MRI of the brain detects neuropathic pain in experimental spinal cord injury. Pain. 2008;138:292-300.   DOI
6 Eto K, Wake H, Watanabe M, Ishibashi H, Noda M, Yanagawa Y, Nabekura J. Inter-regional contribution of enhanced activity of the primary somatosensory cortex to the anterior cingulate cortex accelerates chronic pain behavior. J Neurosci. 2011;31:7631-7636.   DOI
7 Knabl J, Witschi R, Hosl K, Reinold H, Zeilhofer UB, Ahmadi S, Brockhaus J, Sergejeva M, Hess A, Brune K, Fritschy JM, Rudolph U, Mohler H, Zeilhofer HU. Reversal of pathological pain through specific spinal GABAA receptor subtypes. Nature. 2008;451:330-334.   DOI
8 Arroyo S, Bennett C, Aziz D, Brown SP, Hestrin S. Prolonged disynaptic inhibition in the cortex mediated by slow, non-α7 nicotinic excitation of a specific subset of cortical interneurons. J Neurosci. 2012;32:3859-3864.   DOI
9 Donoghue JP, Carroll KL. Cholinergic modulation of sensory responses in rat primary somatic sensory cortex. Brain Res. 1987;408:367-371.   DOI
10 Sara SJ, Bouret S. Orienting and reorienting: the locus coeruleus mediates cognition through arousal. Neuron. 2012;76:130-141.   DOI
11 North RA, Yoshimura M. The actions of noradrenaline on neurones of the rat substantia gelatinosa in vitro. J Physiol. 1984;349:43-55.   DOI
12 Deitcher Y, Leibner Y, Kutzkel S, Zylbermann N, London M. Nonlinear relationship between multimodal adrenergic responses and local dendritic activity in primary sensory cortices. BioRxiv. 814657 [Preprint]. 2019 [cited 2021 Dec 5]. Available from: https://doi.org/10.1101/814657.   DOI
13 Coull JA, Boudreau D, Bachand K, Prescott SA, Nault F, Sik A, De Koninck P, De Koninck Y. Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature. 2003;424:938-942.   DOI
14 Okada T, Kato D, Nomura Y, Obata N, Quan X, Morinaga A, Yano H, Guo Z, Aoyama Y, Tachibana Y, Moorhouse AJ, Matoba O, Takiguchi T, Mizobuchi S, Wake H. Pain induces stable, active microcircuits in the somatosensory cortex that provide a therapeutic target. Sci Adv. 2021;7:eabd8261.   DOI
15 Poorthuis RB, Enke L, Letzkus JJ. Cholinergic circuit modulation through differential recruitment of neocortical interneuron types during behaviour. J Physiol. 2014;592:4155-4164.   DOI
16 Cha MH, Kim DS, Cho ZH, Sohn JH, Chung MA, Lee HJ, Nam TS, Lee BH. Modification of cortical excitability in neuropathic rats: a voltage-sensitive dye study. Neurosci Lett. 2009;464:117-121.   DOI
17 Xiong W, Ping X, Ripsch MS, Chavez GSC, Hannon HE, Jiang K, Bao C, Jadhav V, Chen L, Chai Z, Ma C, Wu H, Feng J, Blesch A, White FA, Jin X. Enhancing excitatory activity of somatosensory cortex alleviates neuropathic pain through regulating homeostatic plasticity. Sci Rep. 2017;7:12743.   DOI
18 Jones AF, Sheets PL. Sex-specific disruption of distinct mPFC inhibitory neurons in spared-nerve injury model of neuropathic pain. Cell Rep. 2020;31:107729.   DOI
19 Harding EK, Salter MW. VIP cortical conductors set the tone for chronic pain. Nat Neurosci. 2017;20:1037-1038.   DOI
20 Pakan JM, Lowe SC, Dylda E, Keemink SW, Currie SP, Coutts CA, Rochefort NL. Behavioral-state modulation of inhibition is contextdependent and cell type specific in mouse visual cortex. Elife. 2016;5:e14985.   DOI
21 Pi HJ, Hangya B, Kvitsiani D, Sanders JI, Huang ZJ, Kepecs A. Cortical interneurons that specialize in disinhibitory control. Nature. 2013;503:521-524.   DOI
22 Hedrick T, Waters J. Acetylcholine excites neocortical pyramidal neurons via nicotinic receptors. J Neurophysiol. 2015;113:2195-2209.   DOI
23 McBurney-Lin J, Lu J, Zuo Y, Yang H. Locus coeruleus-norepinephrine modulation of sensory processing and perception: a focused review. Neurosci Biobehav Rev. 2019;105:190-199.   DOI
24 Brombas A, Fletcher LN, Williams SR. Activity-dependent modulation of layer 1 inhibitory neocortical circuits by acetylcholine. J Neurosci. 2014;34:1932-1941.   DOI
25 Pfeffer CK, Xue M, He M, Huang ZJ, Scanziani M. Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nat Neurosci. 2013;16:1068-1076.   DOI
26 Morrison JH, Foote SL. Noradrenergic and serotoninergic innervation of cortical, thalamic, and tectal visual structures in Old and New World monkeys. J Comp Neurol. 1986;243:117-138.   DOI
27 Latremoliere A, Woolf CJ. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain. 2009;10:895-926.   DOI
28 Woodbury CJ, Kullmann FA, McIlwrath SL, Koerber HR. Identity of myelinated cutaneous sensory neurons projecting to nocireceptive laminae following nerve injury in adult mice. J Comp Neurol. 2008;508:500-509.   DOI
29 Gwak YS, Hulsebosch CE. Neuronal hyperexcitability: a substrate for central neuropathic pain after spinal cord injury. Curr Pain Headache Rep. 2011;15:215-222.   DOI
30 Bak MS, Park H, Kim SK. Neural plasticity in the brain during neuropathic pain. Biomedicines. 2021;9:624.   DOI
31 Cichon J, Blanck TJJ, Gan WB, Yang G. Activation of cortical somatostatin interneurons prevents the development of neuropathic pain. Nat Neurosci. 2017;20:1122-1132.   DOI
32 Kim SK, Kato G, Ishikawa T, Nabekura J. Phase-specific plasticity of synaptic structures in the somatosensory cortex of living mice during neuropathic pain. Mol Pain. 2011;7:87.
33 Eto K, Ishibashi H, Yoshimura T, Watanabe M, Miyamoto A, Ikenaka K, Moorhouse AJ, Nabekura J. Enhanced GABAergic activity in the mouse primary somatosensory cortex is insufficient to alleviate chronic pain behavior with reduced expression of neuronal potassium-chloride cotransporter. J Neurosci. 2012;32:16552-16559.   DOI
34 Kim SK, Nabekura J. Rapid synaptic remodeling in the adult somatosensory cortex following peripheral nerve injury and its association with neuropathic pain. J Neurosci. 2011;31:5477-5482.   DOI
35 DeFelipe J, Lopez-Cruz PL, Benavides-Piccione R, Bielza C, Larranaga P, Anderson S, Burkhalter A, Cauli B, Fairen A, Feldmeyer D, Fishell G, Fitzpatrick D, Freund TF, Gonzalez-Burgos G, Hestrin S, Hill S, Hof PR, Huang J, Jones EG, Kawaguchi Y, et al. New insights into the classification and nomenclature of cortical GABAergic interneurons. Nat Rev Neurosci. 2013;14:202-216.   DOI
36 Cichon J, Gan WB. Branch-specific dendritic Ca2+ spikes cause persistent synaptic plasticity. Nature. 2015;520:180-185.   DOI
37 Kim SK, Hayashi H, Ishikawa T, Shibata K, Shigetomi E, Shinozaki Y, Inada H, Roh SE, Kim SJ, Lee G, Bae H, Moorhouse AJ, Mikoshiba K, Fukazawa Y, Koizumi S, Nabekura J. Cortical astrocytes rewire somatosensory cortical circuits for peripheral neuropathic pain. J Clin Invest. 2016;126:1983-1997.   DOI
38 Kim YR, Kim CE, Yoon H, Kim SK, Kim SJ. S1 Employs featuredependent differential selectivity of single cells and distributed patterns of populations to encode mechanosensations. Front Cell Neurosci. 2019;13:132.   DOI
39 Yoshimura M, Furue H. In vivo electrophysiological analysis of mechanisms of monoaminergic pain inhibitory systems. Pain. 2017;158 Suppl 1:S85-S91.   DOI
40 Alba-Delgado C, Llorca-Torralba M, Horrillo I, Ortega JE, Mico JA, Sanchez-Blazquez P, Meana JJ, Berrocoso E. Chronic pain leads to concomitant noradrenergic impairment and mood disorders. Biol Psychiatry. 2013;73:54-62.   DOI
41 Chung JM, Surmeier DJ, Lee KH, Sorkin LS, Honda CN, Tsong Y, Willis WD. Classification of primate spinothalamic and somatosensory thalamic neurons based on cluster analysis. J Neurophysiol. 1986;56:308-327.   DOI
42 Seifert F, Maihofner C. Central mechanisms of experimental and chronic neuropathic pain: findings from functional imaging studies. Cell Mol Life Sci. 2009;66:375-390.   DOI
43 Woolf CJ; American College of Physicians; American Physiological Society. Pain: moving from symptom control toward mechanismspecific pharmacologic management. Ann Intern Med. 2004;140: 441-451.   DOI
44 Baron R. Mechanisms of disease: neuropathic pain--a clinical perspective. Nat Clin Pract Neurol. 2006;2:95-106.   DOI
45 Costigan M, Scholz J, Woolf CJ. Neuropathic pain: a maladaptive response of the nervous system to damage. Annu Rev Neurosci. 2009;32:1-32.   DOI
46 Woolf CJ, Shortland P, Coggeshall RE. Peripheral nerve injury triggers central sprouting of myelinated afferents. Nature. 1992;355:75-78.   DOI
47 Kohno T, Moore KA, Baba H, Woolf CJ. Peripheral nerve injury alters excitatory synaptic transmission in lamina II of the rat dorsal horn. J Physiol. 2003;548(Pt 1):131-138.   DOI
48 Baba H, Doubell TP, Woolf CJ. Peripheral inflammation facilitates Abeta fiber-mediated synaptic input to the substantia gelatinosa of the adult rat spinal cord. J Neurosci. 1999;19:859-867.   DOI
49 Blom SM, Pfister JP, Santello M, Senn W, Nevian T. Nerve injuryinduced neuropathic pain causes disinhibition of the anterior cingulate cortex. J Neurosci. 2014;34:5754-5764.   DOI
50 Kim CE, Kim YK, Chung G, Jeong JM, Lee DS, Kim J, Kim SJ. Large-scale plastic changes of the brain network in an animal model of neuropathic pain. Neuroimage. 2014;98:203-215.   DOI
51 Wei JA, Hu X, Zhang B, Liu L, Chen K, So KF, Li M, Zhang L. Electroacupuncture activates inhibitory neural circuits in the somatosensory cortex to relieve neuropathic pain. iScience. 2021;24:102066.   DOI
52 Beierlein M, Gibson JR, Connors BW. Two dynamically distinct inhibitory networks in layer 4 of the neocortex. J Neurophysiol. 2003;90:2987-3000.   DOI
53 Gasselin C, Hohl B, Vernet A, Crochet S, Petersen CCH. Cell-typespecific nicotinic input disinhibits mouse barrel cortex during active sensing. Neuron. 2021;109:778-787.e3.   DOI
54 Brightwell JJ, Taylor BK. Noradrenergic neurons in the locus coeruleus contribute to neuropathic pain. Neuroscience. 2009;160:174-185.   DOI
55 Alba-Delgado C, Mico JA, Berrocoso E. Neuropathic pain increases spontaneous and noxious-evoked activity of locus coeruleus neurons. Prog Neuropsychopharmacol Biol Psychiatry. 2021;105:110121.   DOI