• Title/Summary/Keyword: Solvent Decomposition

Search Result 125, Processing Time 0.03 seconds

Prepyrolysis Structural Relaxation of Coal Studied by Differential Scanning Calorimetry and Solvent Swelling

  • Yun, Yongseung;Suuberg, E.M.
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1993.05a
    • /
    • pp.126-131
    • /
    • 1993
  • Differential Scanning Calorimetry (DSC) and solvent swelling technique have been applied for identifying physical transition temperatures in the macromolecular structure of coals. The transition processes seem to be associated with physical relaxation of the coal structure and are irreversible processes. In Pittsburgh No. 8 high volatile bituminous (hvb) coat one physical transition was noted at 250-30$0^{\circ}C$ (at 8$^{\circ}C$/min) without any significant accompanying weight loss. Coals of higher rank than high volatile bituminous, i.e., Upper Freeport medium volatile bituminous (mvb) and Pocahontas No.3 low volatile bituminous (lvb) coals, exhibit structural relaxation just before the major thermal decomposition process and a sharp increase in solvent swellability accompanies this relaxation. In the case of both the Pittsburgh No.8 and the Upper Freeport coat structural relaxations at around 36$0^{\circ}C$ seem to coincide with release of "guest molecules".les".uot;.

  • PDF

Suppression of Co-intercalation on the Carbon Anode by MA Addition in a PC-base Electrolyte

  • Kim, Woo-Seong;Park, Dong-Won;Jung, Hwan-Jung;Choi, Yong-Kook
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.1
    • /
    • pp.82-86
    • /
    • 2006
  • Propylene Carbonate (PC) has the interesting properties of being able to dissolve and dissociate lithium salts, thus leading to highly conducting electrolytes even at low temperatures. Moreover, electrolytes that contain PC are stable against oxidation at voltages up to ~5 V. However, it is known that, when lithium is intercalated into graphite in pure PC based electrolytes, solvent co-intercalation occurs, leading to the destruction of the graphite structure. (i.e., exfoliation). The objective of this study was to suppress PC decomposition and prevent exfoliation of the graphite anode by co-intercalation. Electrochemical characteristics were studied using Kawasaki mesophase fine carbon (KMFC) in different 1 M $LiPF_6$/PC-based electrolytes. Electrochemical experiments were completed using chronopotentiometry, cyclic voltammetry, impedance spectroscopy, X-ray diffraction, and scanning electron microscopy. From the observed results, we conclude that the MA and $Li_2CO_3$ additive suppressed co-intercalation of the PC electrolyte into the graphite anode. The use of additives, for reducing the extent of solvent decomposition before exfoliation of the graphite anode, could therefore enhance the stability of a KMFC electrode.

A Study on Physical Properties and Catalytic Combustion of Methane of Sr Hexaaluminate Prepared using 1-butanol and Ethylene Glycol (1-butanol과 ethylene glycol을 이용하여 합성한 Sr hexaaluminate의 물리적 특성 및 메탄 연소 반응에 관한 연구)

  • Shon, Jung Min;Woo, Seong Ihl
    • Korean Chemical Engineering Research
    • /
    • v.45 no.3
    • /
    • pp.209-214
    • /
    • 2007
  • Sr hexaaluminate($Sr_{1-x}La_xMnAl_{11}O_{19-\alpha}$) were prepared by sol-gel method of metal alkoxide with 1-butanol or ethylene glycol as a solvent. The physical properties of prepared hexaaluminates were examined by TG/DTA, XRD and $N_2$ adsorption. When ethylene glycol was used as a solvent, the decomposition reaction and dehydroxylation reaction was observed above $400^{\circ}C$ and the temperature of the formation of a crystal structure of hexaaluminate was also increased resulting in small specific surface area and low catalytic activity of methane compared to Sr-hexaaluminate with 1-butanol.

Decomposition Characteristics of DDVP , Malathion and Diazinon Emusifiable Concentrates (DDVP, Malathion 및 Diazinon유제의 경시변화 특성)

  • Yu, Ju-Hyun;Park, Chang-Kyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.11 no.2
    • /
    • pp.146-154
    • /
    • 1992
  • DDVP, malathion and diazinon ECs which differ in chemical compositions and moisture contents were formulated with nine emulsifiers, three solvents(xylene, cyclohexanone and DMF) and epichlorohydrin. For the studies of decomposition characteristics, these technicals and ECs were subjected to the test under elevated temperature at $54^{\circ}C$ for 15 days and $38^{\circ}C$ for 90 days respectively. DDVP technical was rapidly decomposed in early stage of thermoaccelerated test at $54^{\circ}C$, but the decomposition rate slowed down with time. As for malathion and diazinon technicals, the longer they were incubated, the more decomposed. The decomposed AI in ECs increased with solvent polarity. The increment of moisture content in ECs accelerated the decomposition of AI, and that was remarkable especially in diazinon ECs. Addition of emulsifiers increased the moisture content to be accelerated the decomposition of AI, but the decomposition of AI was more affected by the kind of emulsifier than by the moisture content of emulsifier, Stabilizing effect by epichlorohydrin was distingished in malathion and diazinon ECs, but there was no effect in other solvent-based formulation except xylene.

  • PDF

A Study of Thermal Decomposition Characteristics of Poly(${\alpha}$-Methylstyrene-co-Acrylonitrile) (${\alpha}$-SAN 공중합체의 열분해 특성에 관한 연구)

  • Kim, Nam-Seok;Seul, Soo-Duk;Park, Keun-Ho;Lee, Woo-Nae;Kim, Duck-Sool;Lee, Seok-Hee
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.84-90
    • /
    • 2005
  • Thermal decomposition of the copolymer of ${\alpha}$-Methylstyrene(AMS) with Acrylonitrile(AN) was investigated. The copolymer was synthesized in a continuous stirred tank reactor(CSTR) at $80^{\circ}C$ using toluene and benzoyl peroxide(BPO) as solvent and initiator, respectively. The reactor volume was 0.3 liters and residence time was 3 hours. The activation energy of thermal decomposition was in the ranges of $34{\sim}54$ kcal/mol for AMS with AN copolymer. The thermogravimetric trace curves were well agreed with the theoretical calculation.

Solvent Effect on Anode Performance in Lithium Ion Batteries (리튬 이온 전지의 부극 성능에 끼치는 용매의 영향)

  • Jeong, Gwang Il;Jo, Jeong Hwan;Sim, U Jong;Choe, Yong Guk
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.6
    • /
    • pp.528-534
    • /
    • 2002
  • We have studied to find the optimum electrolyte that satisfied high ionic conductivity, large elec-trochemical window, etc in Li-ion battery. And also studied were the effect of a passive film on carbon anode surface,which is formed by solvent decomposition during the initial charge process. Electrochemical properties of the passive film formed on carbon anode surface investigated and explained as the volumetric ratio of the mixed solvents. The results of scanning electron microscopy, chronopotentiometry, cyclic voltammetry, impedance spectroscopy revealed that the electrochemical properties of the passive film were varied with the ionic conductivity of the electrolyte including the mixed solvents.

Properties of Capacity on Carbon Electrode in EC : MA Electrolyte II. Effect of Additives on Initial Irreversible Capacity (EC : MA 혼합전해질에서 카본 전극의 용량 특성 II. 초기 비가역 용량에 대한 첨가제의 효과)

  • Park, Dong-Won;Kim, Woo-Seong;Son, Dong-Un;Choi, Yong-Kook
    • Applied Chemistry for Engineering
    • /
    • v.17 no.6
    • /
    • pp.575-579
    • /
    • 2006
  • Solid electrolyte interface is formed on a carbon electrode used as an anode in Li-ion battery, which can be of $Li^{+}$ intercalation/deintercalation during the first cycle. The passivation film formed by a solvent decomposition during the initial charge process affects cell performance and it was one of the main reason of an initial irreversible capacity. This paper describes the use, for the first time, of $Li_2CO_3$ as the additive for the formation of a passivation film on the carbon surface to suppress the initial irreversible reaction. Chronopotentiometry, cyclic voltammetry, and impedance spectroscopy were used to investigate the effects of the $Li_{2}CO_{3}$ additive. Scanning electron microscopy, energy dispersive X-ray analysis, and X-ray diffraction were also used to monitor changes in the surface morphology and composition of the passivation film formed by solvent decomposition and the precipitation of $Li_{2}CO_{3}$. The addition of $Li_{2}CO_{3}$ to a solution of 1 M $LiPF_{6}$/EC:MA (1:3, v/v) resulted in a decrease in the initial irreversible capacity and it was due to the suppression of the solvent decomposition on the electrode surface.

Studies on the Zr-Pyrithione Complex (지르코늄-피리치온 착물에 관한 연구)

  • Kwon, Chung-Moo;Rhee, Gye-Ju
    • Journal of Pharmaceutical Investigation
    • /
    • v.20 no.3
    • /
    • pp.145-152
    • /
    • 1990
  • Zirconium pyrithione complex was prepared by reaction of sodium-pyrithione solution and zirconyl chloride solution. The physico-chemical properties of the complex was examined by means of IR, XRD, DSC and NMR. And the stability of Zr-complex was investigated on the basis of accelerated stability analysis under conditions of temp. elevation, UV radiation and pH dependence. The result indicates that the ratio of the ligand to metal in Zr-pyrithione complex was determined 4:1, and its stability constant was $4.643{\times}10^4$. The rate order of decomposition of the complex was apparent first-order reaction of which rate constant and the decomposition rate was not only accelerated by effect of heat and UV radiation but was catalyzed by specific acid-base catalysis considered the pH dependence for the hydrolysis of the complex and the suspension was most stable over the range pH 4-8 indicating that solvent catalysis is the primary made of reaction in this region.

  • PDF

Formation Fe2O3 Nanowalls through Solvent-Assisted Hydrothermal Process and Their Application for Titan Yellow GR Dye Degradation

  • Ahmed, Khalid Abdelazez Mohamed
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.2
    • /
    • pp.205-209
    • /
    • 2014
  • Hematite iron oxide (${\alpha}$-$Fe_2O_3$) nanowalls were fabricated on aluminum substrate by a facile solvent-assisted hydrothermal oxidation process. The XRD and EDS patterns indicate that the sample has a rhombohedral phase of hematite $Fe_2O_3$. FE-SEM, TEM, HR-TEM, SA-ED were employed to characterize the resulting materials. $N_2$ adsorption-desorption isotherms was used to study a BET surface area. Their capability of catalytic degradation of titan yellow GR azo dye with air oxygen in aqueous solution over $Fe_2O_3$ catalysts was studied. The result indicates that the as-prepared product has a high catalytic activity, because it has a larger surface area. Langmuir and Freundlich isotherms of adsorption dye on the catalysts surface were investigated and the decomposition of titan yellow GR follows pseudo-first order kinetic.