Browse > Article
http://dx.doi.org/10.5012/jkcs.2014.58.2.205

Formation Fe2O3 Nanowalls through Solvent-Assisted Hydrothermal Process and Their Application for Titan Yellow GR Dye Degradation  

Ahmed, Khalid Abdelazez Mohamed (Department of Chemistry, Faculty of Science and Technology, Al-Neelain University)
Publication Information
Abstract
Hematite iron oxide (${\alpha}$-$Fe_2O_3$) nanowalls were fabricated on aluminum substrate by a facile solvent-assisted hydrothermal oxidation process. The XRD and EDS patterns indicate that the sample has a rhombohedral phase of hematite $Fe_2O_3$. FE-SEM, TEM, HR-TEM, SA-ED were employed to characterize the resulting materials. $N_2$ adsorption-desorption isotherms was used to study a BET surface area. Their capability of catalytic degradation of titan yellow GR azo dye with air oxygen in aqueous solution over $Fe_2O_3$ catalysts was studied. The result indicates that the as-prepared product has a high catalytic activity, because it has a larger surface area. Langmuir and Freundlich isotherms of adsorption dye on the catalysts surface were investigated and the decomposition of titan yellow GR follows pseudo-first order kinetic.
Keywords
Iron oxide; Synthesis; Nanowalls; Catalyst; Titan yellow GR;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Li, S. Z.; Zhang, H.; Wu, J. B.; Ma, X. Y.; Yang, D. R. Cryst. Growth Des. 2006, 6, 351.   DOI   ScienceOn
2 Huo, L. H.; Li, W.; Lu, L.; Cui, H. N.; Xi, S. Q.; Wang, J.; Zhao, B.; Shen, Y. C.; Lu, Z. H.Chem. Mater. 2000, 12, 790.   DOI   ScienceOn
3 Gondal, M. A.; Hameed, A.; Yamani, Z. H.; Suwaiyan, A. Chem. Phys. Lett. 2004, 385, 111.   DOI
4 Han, J. S.; Bredow, T.; Davey, D. E.; Yu, A. B.; Mulcahy, D. E. Sens. Actuators B 2001, 75, 18.   DOI
5 Zboril, R.; Mashlan, M.; Petridis, D. Chem. Mater. 2002, 14, 969.   DOI   ScienceOn
6 Zhang, G.; Gao, Y.; Zhang, Y.; Guo, Y. Environ. Sci. Technol. 2010, 44, 6384.   DOI
7 Carneiro, P. A.; Nogueira, R. F. P.; Zanoni, M. V. B. Dyes Pigm. 2007, 74, 127.   DOI   ScienceOn
8 Wu, C.; Yin, P.; Zhu, X.; OuYang, C.; Xie, Y. J. Phys. Chem. B 2006, 110, 17806.   DOI   ScienceOn
9 Widder, K. J.; Senyei, A. E.; Scarpelli, D. G. Proc. Soc. Exp. Biol. Med. 1978, 58, 141.
10 Pradhan, D.; Sindhwani, S.; Leung, K. T. Nanoscale Res. Lett. 2010, 5, 1727.   DOI
11 Woo, K.; Hong, J. W.; Choi, S. M.; Lee, H. W.; Ahn, J. P.; Kim, C. S.; Lee, S. W. Chem. Mater. 2004, 16, 2814.   DOI   ScienceOn
12 Chen, J.; Xu, L. N.; Li, W. Y.; Gou, X. L. Adv. Mater. 2005, 17, 582.   DOI   ScienceOn
13 Zheng, Y. H.; Cheng, Y.; Wang, Y. S.; Bao, F.; Zhou, L. H.; Wei, X. F.; Zhang, Y. Y.; Zheng, Q. J. Phys. Chem. B 2006, 110, 3093.
14 Vayssieres, L.; Sathe, C.; Butorin, S. M.; Shuh, D. K.; Nordgren, J.; Guo, J. H. Adv. Mater. 2005, 17, 2320.   DOI
15 Zeng, S. Y.; Tang, K. B.; Li, T. W.; Liang, Z. H.; Wang, D.; Wang, Y. K.; Zhou, W. W. J. Phys. Chem. C 2007, 111, 10217.
16 Wu, Z. C.; Yu, K.; Zhang, S. D.; Xie, Y. J. Phys. Chem. C 2008, 112, 11307.   DOI   ScienceOn
17 Gou, X. L.; Wang, G. X.; Park, J. S.; Liu, H.; Yang, J. Nanotechnol. 2008, 19, 125606.   DOI
18 He, K.; Xu, C. Y.; Zhen, L.; Shao, W. Z. Mater. Lett. 2008, 62, 739.   DOI   ScienceOn
19 Hu, X. L.; Yu, J. C.; Gong, J. M.; Li, Q.; Li, G. S. Adv. Mater. 2007, 19, 2324.   DOI
20 Park, T. J.; Wong, S. S. Chem. Mater. 2006, 18, 5289.   DOI
21 Zhong, L. S.; Hu, J. S.; Liang, H. P.; Cao, A. M.; Song, W. G.; Wan, L. J. Adv. Mater. 2006, 18, 2426.   DOI   ScienceOn
22 Zhu, L. P.; Xiao, H. M.; Liu, X. M.; Fu, S.Y. J. Mater. Chem. 2006, 16, 1794.   DOI
23 Zhu, L. P.; Xiao, H. M.; Fu, S. Y. Cryst. Growth Des. 2007, 7, 177.   DOI
24 Lei, D.; Zhang, M.; Qu, B.; Chen, L.; Wang, Y.; Zhang, E.; Xu, Z.; Li, Q.; Wang, T. Nanoscale 2012, 4, 3422-3426.   DOI
25 Liang, Z.; Gao, R.; Lan, J. L.; Wiranwetchayan, O.; Zhang, Q.; Li, C.; Cao, G. Sol. Energy Mater. Sol. Cells 2013, 117, 34-40.   DOI
26 Varghese, B. et al. Chem. Mater. 2008, 20, 3360-3367.   DOI
27 Matthews, R. W. Water Res. 1991, 25, 1169-1176.   DOI   ScienceOn
28 Cao, F.; Pan, G. X.; Tang, P. S.; Chen, H. F. Mater. Res. Bull. 2013, 48, 1178-1183.   DOI
29 Shin, H. S.; Kwon, S.-J.; Yoop, Hakhoechi 1993, 30, 499.
30 Ahmed, K. A. M.; Zeng, Q.; Wu, K.; Huang, K. J. Solid State Chem. 2010, 183, 744-751.   DOI   ScienceOn
31 Gogate, P. R.; Pandit, A. B. Adv. Environ.Res. 2004, 8, 501-551.   DOI   ScienceOn
32 Manivannan, M.; Reetha, D.; Ganesh, P. J. Ecobiotechnol. 2011, 3, 29-32.
33 Cao, M. H.; Liu, T. F.; Gao, S.; Sun, G. B.; Wu, X. L.; Hu, C. W.; Wang, Z. L. Angew. Chem. Int. Ed. 2005, 44, 4197.   DOI   ScienceOn
34 Pulgarin, C.; Kiwi, J. Langmuir 1995, 11, 519.   DOI
35 Pelino, M.; Colella, C.; Cantallini, C.; Faccio, M.; Ferri, G.; D'Amico, A. Sens Actuators, B 1992, 7, 464.   DOI
36 Wen, X. G.; Wang, S. H.; Ding, Y.; Wang, Z. L.; Yang, S. H. J. Phys. Chem. B 2005, 109, 215.   DOI
37 Casula, M. F.; Jun, Y. W.; Zaziski, D. J.; Chan, E. M.; Corrias, A.; Alivisatos, A. P. J. Am. Chem. Soc. 2006, 128, 1675.   DOI