• Title/Summary/Keyword: Solution-precipitation Process

Search Result 240, Processing Time 0.038 seconds

Sandstone Diagenesis of the Lower Permian Jangseong Formation, Jangseong Area, Samcheog Coalfield (삼척탄전 장성일대에 분포하는 하부페름기 장성층 사암의 속성작용)

  • 박현미;유인창;김형식
    • The Journal of the Petrological Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.132-145
    • /
    • 1998
  • The coal-bearing siliciclastic rocks of the Lower Permian Jangseong Formation, Samcheog coalfield, represent a megacyclothem which shows cyclic repetitions of sandstone, shale, coaly shale, and coals. Petrographic, geochemical, and SEM studies for sandstone samples, and XRD analysis for clay minerals were carried out to understand diagenesis in the sandstones of the Jangseong Formation. The Jangseong sandstones are composed of 60% quartz (mainly monocrystalline quartz) and 36% clay matrix and cement with minor amounts of feldspar, lithic fragments and accessory minerals (less than 4%). Jangseong sandstones are classified mostly as quartzwackes and partly as lithic graywackes according to the scheme of Dott(1964). The textural relationships between authigenic minerals and cements in thin sections and SEM photomicrographs suggest the paragenetic sequence as follows; (1) mechanical compaction, (2) cementation by quartz overgrowth, (3) formation of authigenic clay minerals (illite, kaolinite), (4) dissolution of framework grains and development of secondary porosity, and (5) later-stage pore-filling by pyrophyllite. We propose that these diagenetic processes might be due to organic-inorganic interaction between the dominant framework grains and the formation water. The Al, Si ions and organic acid, derived from dewatering of interbedded organic-rich shale and coals, were transported into the Jangseong sandstones. This caused changes in the chemistry of the formation water of the sandstones, and resulted in overgrowth of quartz and precipitation of authigenic clay minerals of kaolinite and illite. The secondary pores, produced during dissolution of clay and framework grains by organic acid and $CO_2$ gas, were conduit for silica-rich solution into the Jangseong sandstones and the influx of silica-rich solution produced the late-stage pyrophyllite after the expanse of kaolinite. The origin of the solution that formed pyrophyllite is not likely to be the organic-rich formation water based on the observation of fracture-filling pyrophyllite in the Jangseong sandstones, but the process of pyrophyllite pore-filling was indirectly related to organic-inorganic interaction.

  • PDF

Preparation of Ni-doped Gamma Alumina from Gibbsite and Its Characteristics (깁사이트로부터 니켈피착 감마알루미나의 제조 및 특성)

  • Lee, Hyun;Chung, In-Sung;Park, Hee-Chan
    • Korean Journal of Materials Research
    • /
    • v.8 no.12
    • /
    • pp.1158-1164
    • /
    • 1998
  • Aluminium sulfate solution was prepared by sulfuric acid treatment from gibbsite. Aluminium sulfate hydrate [$Al_2(SO_4)_3$ · $nH_2O$] was precipitated from aluminium sulfate solution by adding it into ethylalcohol. From XRD analysis as-prepared $Al_2(SO_4)_3$ · $nH_2O$ was confirmed to have mixed-crystalization water(n=18, 16, 12, 6). The average water of crystalization calculated from thermogravimetry(TG) was 14.7. Aluminium sulfate hydrate [$Al_2(SO_4)_3$ · $nH_2O$] was thermally decomposed and converted to $Al_2(SO_4)_3$ at $800^{\circ}C$, $\gamma-Al_2O_3$ at $900-1000^{\circ}C$, and $\alpha-Al_2O_3$ at $1200^{\circ}C$. Ni-doped $\gamma-Al_2O_3$, was synthesized from the slurry of as-prepared $\gamma-Al_2O_3$, with the ratio of [Ni]/[Al]=0.5. The reaction conditions of synthesis were determined as initial pH 9.0 and temperature $80^{\circ}C$ The basicity(pH) of slurry was controlled by using urea and $NH_4OH$ solution. Urea was also used for deposition-precipitation. For determining termination of reaction, the data acquisition was performed by oxidation reduction potential(ORP), conductivity and pH value in the process of reaction. Termination of the reaction was decided by observing the reaction steps and rapid decrease in conductivity. On the other hand, BET(Brunauer, Emmett and Teller) and thermal diffusity of Ni- doped $\gamma-Al_2O_3$, with various content of Ni were measured and compared. Thermal stability of Ni- doped $\gamma-Al_2O_3$ at $1250^{\circ}C$ was confirmed from BET and XRD analysis. The surface state of Ni-doped $\gamma-Al_2O_3$ was investigated by X-ray photoelectron spectroscopy(XPS). The binding energy at $Ni2P_{3/2}$ increased with increasing the formation of $NiAl_2O_4$ phase.

  • PDF

Treatment Characteristics of Soil Clothing Contact Oxidation Process using Bio-media (생물담체를 충진한 토양피복 산화접촉공정의 하수처리특성)

  • Kim, Hong-Jae;Kang, Jae-Hee;Lee, Ki-Seok;Motoki, Kubo;Kang, Chang-Min;Chung, Seon-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.4
    • /
    • pp.414-419
    • /
    • 2005
  • This study was performed to compare the treatment efficiencies of two media, newly developed Bio-rock and conventional gravel, in soil clothing contact oxidation process. The composition of synthetic wastewater were $COD_{Cr}$ $150{\sim}370\;mg/L$, $BOD_5$ $150{\sim}270\;mg/L$, T-N $20{\sim}60\;mg/L$, T-P $5{\sim}25\;mg/L$, pH 7 and 2 mL/L of trace element solution. The experiment using two reactors was comparatively conducted for the flow rate of 40 L/d for 13 months, respectively. Initially Bio-rock reactor was increased to pH 12 due to $Ca(OH)_2$ with hydration of cement, but gravel reactor was dropped to pH 4 due to the degradation of organic material and nitrification. This significant pH variation deteriorated the growth and activity of microorganism. But the high pH of Bio-rock seems favorite to ammonia stripping and precipitation of phosphate. Such pH variation of Bio-rock and gravel reactors were finally stabilized to pH 8 and pH 6, respectively. The removal efficiencies of organic compounds from Bio-rock reactor were 96% of $COD_{Cr}$, 98% of $BOD_5$, 80% of T-N and 85% of T-P which stably coping against variation of influent concentration. But those of gravel reactor were 96% of $COD_{Cr}$, 96% of $BOD_5$, 42% of T-N and 40% of T-P, respectively. The Bio-rock was 2 times higher than T-N and T-P in treatment efficiency. And electron-microscopic examination showed that Bio-rock was more favorable to microbial adherence than gravel. The microbial populations were $5.2{\times}10^6\;CFU/mL$ of Bio-rock reactor compared to $2.6{\times}10^6\;CFU/mL$ in gravel reactor. In result Bio-rock was favor to microbial adherence and high treatment efficiency in spite of variation of influent concentration which had the advantages in saving running time and reducing site requirement.

THE EFFECT OF THE pH OF REMINERALIZED BUFFER SOLUTIONS ON DENTIN REMINERALIZXATION (재광화 완충용액의 pH 변화가 상아질의 재광화에 미치는 영향)

  • Kim, Sung-Chul;Roh, Bung-Duk;Jung, Il-Young;Lee, Chan-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.2
    • /
    • pp.151-161
    • /
    • 2007
  • Dental caries is the most common disease in the oral cavity However, the mechanism and treatment of dental caries is not completely understood since many complex factors are involved. Especially the effect of pH on remineralization of early stage of dental caries is still controversial In this study, dental caries in dentin was induced by using lactic acidulated buffering solutions and the loss or inorganic substance was measured. Also decalcified specimens were remineralized by three groups of solution with different pH (group of pH 4.3, 5.0, and 5.5). Then, the amount and the area of inorganic substance precipitation was quantitatively analyzed with microradiograph. Also a qualitative comparison of the normal phase the demineralized phase, and the remineralized phase of hydroxyapatite crystal was made under SEM. The results were as follows, 1. In microradiograghic analysis, as the pH increased, the amount of remineralization in decalcified dentin tended to increase significantly As the pH decreaced, deeper decalcification, however, occurred along with remineralization. The group of pH 5.5 had a tendency to be remineralized without demineralization (p<0.05). 2. In SEM view, the remineralization in dentine caries occurred from the hydroxyapatite crystal surface surrounding the mesh of organic matrix, and eventually filled up the demineralized area. 3. 5 days after remineralization, hydroxyapatite crystal grew bigger with deposition of inorganic substance in pH 4.3 and 5.0 group, and the crystal in the remineralized area appeared to return to normal. After 10 days, the crystals in group of pH 4.3 and 5.0, which grew bigger after 5 days of remineralization, turned back to their normal size, but in group of pH 5.5, some crystals were found to double their size. In according to the results of this experiment, the decalcifying and remineralizing process of dentine is neither simple nor independent, but a dynamic process in which decalcification and remineralization occur simultaneously. The remineralization process occurred from the hydroxyapatite crystal surface.

Study on the Manufacture of High-purity Vanadium Pentoxide for VRFB Using Chelating Agents (킬레이트제를 활용한 VRFB용 고순도 오산화바나듐 제조 연구)

  • Kim, Sun Kyung;Kwon, Sukcheol;Kim, Hee Seo;Suh, Yong Jae;Yoo, Jeong Hyun;Chang, Hankwon;Jeon, Ho-SeoK;Park, In-Su
    • Resources Recycling
    • /
    • v.31 no.2
    • /
    • pp.20-32
    • /
    • 2022
  • This study implemented a chelating agent (Ethylenediaminetetraacetic acid, EDTA) in purification to obtain high-purity vanadium pentoxide (V2O5) for use in VRFB (Vanadium Redox Flow Battery). V2O5 (powder) was produced through the precipitation recovery of ammonium metavanadate (NH4VO3) from a vanadium solution, which was prepared using a low-purity vanadium raw material. The initial purity of the powder was estimated to be 99.7%. However, the use of a chelating agent improved its purity up to 99.9% or higher. It was conjectured that the added chelating agent reacted with the impurity ions to form a complex, stabilizing them. This improved the selectivity for vanadium in the recovery process. However, the prepared V2O5 powder exhibited higher contents of K, Mn, Fe, Na, and Al than those in the standard counterparts, thus necessitating additional research on its impurity separation. Furthermore, the vanadium electrolyte was prepared using the high-purity V2O5 powder in a newly developed direct electrolytic process. Its analytical properties were compared with those of commercial electrolytes. Owing to the high concentration of the K, Ca, Na, Al, Mg, and Si impurities in the produced vanadium electrolyte, the purity was analyzed to be 99.97%, lower than those (99.98%) of its commercial counterparts. Thus, further research on optimizing the high-purity V2O5 powder and electrolyte manufacturing processes may yield a process capable of commercialization.

Assessment for $CO_2$ Biomineralization Characteristics and its Applicability for Solidified Sludge (이산화탄소 생광물화 특성 및 슬러지 고화물 적용성 평가)

  • Min, Dong-Hee;Ahn, Chang-Min;Han, Ji-Sun;Yoon, Soon-Uk;Jeon, Eun-Jeong;Won, Jong-Choul;Chun, Seung-Kyu;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.11
    • /
    • pp.812-820
    • /
    • 2011
  • This study was conducted to characterize $CO_2$ biomineralization on several minerals (i.e., CaO, MgO, $SiO_2$) by bottle test in an aqueous solution and solidified sludge using different aerobic bacterial strains like Bacillus megaterium and Bacillus pasteurii by batch test. These bacteria promote the formation of microenvironments that facilitate the precipitation of mineral phases that were unsaturated in the bulk solution. For one type of mineral solely amended, the $CO_2$ was reduced at the highest of 4.0 mmol for MgO while it was not that much lower for CaO and $SiO_2$ showing 1.1 and 0.3 mmol $CO_2$2, respectively. For two types of minerals simultaneously amended, the $CO_2$ was reduced at the greater extent for both Ca + Mg and Mg + Si showing 2.7 and 2.3 mmol, respectively whereas it was less for Ca + Si at 1.8 mmol. For solidified sludge, the $CO_2$ reduction rate changed depending on the volume of solidified sludge placed in the medium and the input $CO_2$ concentration.. The reduction rate of $CO_2$ was increased with increasing the volume of solidified sludge. Results of XRD analysis indicate that $CaCO_3$ (Calcite) was dominantly formed among others (e.g., Aragonite, Dolomite). SEM analysis showed that the sample with Bacillus pasteurii, could more form minerals rather than control. As demonstrated in this study, $CO_2$ would be effectively sequestered in biomineralization process.

Cobalt and Nickel Ferrocyanide-Functionalized Magnetic Adsorbents for the Removal of Radioactive Cesium (방사성 세슘 제거를 위한 코발트 혹은 니켈 페로시아나이드가 도입된 자성흡착제)

  • Hwang, Kyu Sun;Park, Chan Woo;Lee, Kune-Woo;Park, So-Jin;Yang, Hee-Man
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.1
    • /
    • pp.15-26
    • /
    • 2017
  • Cobalt ferrocyanide (CoFC) or nickel ferrocyanide (NiFC) magnetic nanoparticles (MNPs) were fabricated for efficient removal of radioactive cesium, followed by rapid magnetic separation of the absorbent from contaminated water. The $Fe_3O_4$ nanoparticles, synthesized using a co-precipitation method, were coated with succinic acid (SA) to immobilize the Co or Ni ions through metal coordination to carboxyl groups in the SA. CoFC or NiFC was subsequently formed on the surfaces of the MNPs as Co or Ni ions coordinated with the hexacyanoferrate ions. The CoFC-MNPs and NiFC-MNPs possess good saturation magnetization values ($43.2emu{\cdot}g^{-1}$ for the CoFC-MNPs, and $47.7emu{\cdot}g^{-1}$ for the NiFC-MNPs). The fabricated CoFC-MNPs and NiFC-MNPs were characterized by XRD, FT-IR, TEM, and DLS. The adsorption capability of the CoFC-MNPs and NiFC-MNPs in removing cesium ions from water was also investigated. Batch experiments revealed that the maximum adsorption capacity values were $15.63mg{\cdot}g^{-1}$ (CoFC-MNPs) and $12.11mg{\cdot}g^{-1}$ (NiFC-MNPs). Langmuir/Freundlich adsorption isotherm equations were used to fit the experimental data and evaluate the adsorption process. The CoFC-MNPs and NiFC-MNPs exhibited a removal efficiency exceeding 99.09% for radioactive cesium from $^{137}Cs$ solution ($18-21Bq{\cdot}g^{-1}$). The adsorbent selectively adsorbed $^{137}Cs$, even in the presence of competing cations.

STUDIES ON THE CYSTINE COMPONENT IN THE SERICULTURAL PROTEINS OF BOMBYX MORI L. (가잠사단백질의 각과정에서의 Cystine 성분에 대한 연구)

  • Choe, Byong-Hee
    • Journal of Sericultural and Entomological Science
    • /
    • v.2
    • /
    • pp.1-31
    • /
    • 1962
  • The purpose of this treatise is to prove the presence of cystine in silk fiber through wide sampling throughout all the sericultural processes of Bombyx mori.; also to show that disulfide cross linkages exist in the silk fiber. The conclusions reached were as follows: 1. Crystalline cystine was obtained from silk fibroin using Folin's Method. 2. Analytical data showing the cystine content of silk fiber and its related materials were obtained using Sullvan's Method as follows: Material Percent Cystine A. Mulberry leaf protein 0.175 B. Silkworm egg 0.33 C. Silkworm Body, matured, fat extracted, without silk gland 0.41 D. Silk gland, matured 1.23 E. Silkworm feces none F. Silkworm pupa, fat extracted 0.30 G. Silkworm moth, fat extracted 0.60 H. Raw Silk 0.22 I. Fibroin 0.175 J. Sericin 0.30 3. The presence of cystine in the silkworm was substantiated the existence of 0.175 % methionine in mulberry leaves and 0.12% methionine in the silk gland. 4. Part of the sulfhydryl compounds in the silk gland is believed to transfer to serine and methionine, with the former being secreted into the liquid silk finally as silk fiber and the latter used for nutritive purposes in the growing of silk gland tissue. 5. The cystine content is variable by mulberry species, silkworm species, sex, breeding process, and other culturing environments. 6. Hybrid silkworms require more nutritive amino acids for effective growth than the original parents, and secrete less of them as silk fiber. 7. From such an observation, the amino acid composition of silk fiber is believed to be fairly flexible. Cystine if included in the amorphous part of the fiber, especially in sericin. 8. The result from enriching the silkworm diet with pure cystine or wool cystine did not result in any advantage, therefore it is believed that the natural cystine and methionine contents in the mulberry leafaregoodenoughforsilkwormnutrition. 9. The disulfide cross linkage in silk fiber was verified by using the Harris Method. Contraction took place following the treatment of the fiber with various salts and acids. Comparisons were made with wool fiber. 10. During these experiments, the fibrious structure of silk fiber and the net-globular liquid form were photographed microscopically. It is believed that the globules of liquid silk are net-formed by the inter attraction of the OH ion of the globular peptide and the H ion of water as shown by the hair cracking behavior of the film. The net-globular protein precipitation from the mulberry protein solution showed that mulberry is a proper diet for the formation of fibrous protein in the silk fiber. 11. The significance of the presence of cystine in silk fiber as emphasized in this paper should result in modification of the general conception that cystine is absent from this fiber. NOTICE: A part of this treatise was presented at the annual Korea Sericultural Society meeting held in 1961.

  • PDF

Sorption Studies of $Cd^{2+}$ on Calcite: Kinetics and Reversibility (방해석의 $Cd^{2+}$ 흡착현상에 대한 연구)

  • Yoon, Hyeon;Reeder, Richard J.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.104-113
    • /
    • 2002
  • The sorption of Cd$^{2+}$ on calcite was studied in aqueous solutions of several electrolytes. The Cd$^{2+}$ concentration, 10$^{-8}$ M, was kept well below saturation with respect to CdCO$_3$(s). Sorption behavior of Cd$^{2+}$ in different ionic strengths of NaClO$_4$solutions shows that sorption is independent of ionic strength. This result suggests that Cd$^{2+}$ sorption on calcite surface is of a specific nature, and adsorption is controlled by an inner-sphere type of surface complex. Two stages in the sorption behavior could be identified: an initial rapid uptake, followed by slower uptake reaching a maximum steady state by 145 hrs. No evidence was observed for surface precipitation, although it can not be entirely ruled out. Desorption of Cd$^{2+}$ from the calcite surface after resuspension into Cd-free solution is initially very rapid, but depends partly on the previous sorption history. Desorption behavior of Cd$^{2+}$ show that an initial rapid desorption followed either by slow uptake reaching a maximum, as in the adsorption experiments, or slowing desorption to reach a steady state minimum. This irreversible behavior of Cd$^{2+}$ sorption and desorption may act as one of the controls for regulating the mobility of dissolved Cd$^{2+}$ natural aqueous systems. Calculated adsorption partition coefficients suggest that overall sorption and desorption process in the concentration range are controlled by d single mechanism.ingle mechanism.

Study for the Stabilization of Arsenic in the Farmland Soil by Using Steel Making Slag and Limestone (제강슬래그와 석회석을 이용한 비소오염 농경지 토양 안정화 연구)

  • Lee, Min-Hee;Jeon, Ji-Hye
    • Economic and Environmental Geology
    • /
    • v.43 no.4
    • /
    • pp.305-314
    • /
    • 2010
  • The stabilization process using limestone ($CaCO_3$) and steel making slag as the immobilization amendments was investigated for As contaminated farmland soils around Chonam abandoned mine, Korea. Batch and continuous column experiments were performed to quantify As-immobilization efficiency in soil and the analyses using XRD and SEM/EDS for secondary minerals precipitated in soil were also conducted to understand the mechanism of Asimmobilization by the amendments. For the batch experiment, with 3% of limestone and steel making slag, leaching concentration of As from the contaminated soil decreased by 62% and 52% respectively, compared to that without the amendment. When the mixed amendment (2% of limestone and 1% of steel making slag) was used, As concentration in the effluent solution decreased by 72%, showing that the mixed of limestone and steel making slag has a great capability to immobilize As in the soil. For the continuous column experiments without the amendment, As concentration from the effluent of the column ranged from 50 to $80\;{\mu}g/L$. However, with 2% limestone and 1% steel making slag, more than 80% diminution of As leaching concentration occurred within 1 year and maintained mostly below $10\;{\mu}g/L$. Results from XRD and SEM/EDS analysis for the secondary minerals created from the reaction of the amendments with $As^{+3}$ (arsenite) investigated that portlandite ($Ca(OH)_2$), calcium-arsenite (Ca-As-O) and calcite ($CaCO_3$) were main secondary minerals and the distinct As peaks in the EDS spectra of the secondary minerals can be observed. These findings suggest that the co-precipitation might be the major mechanisms to immobilize As in the soil medium with limestone and steel making slag.