• Title/Summary/Keyword: Solution-based process

Search Result 1,963, Processing Time 0.032 seconds

Electrical Properties of Two-dimensional Electron Gas at the Interface of LaAlO3/SrTiO3 by a Solution-based Process (용액 공정을 통해 제조된 LaAlO3/SrTiO3 계면에서의 이차원 전자 가스의 전기적 특성)

  • Kyunghee Ryu;Sanghyeok Ryou;Hyeonji Cho;Hyunsoo Ahn;Jong Hoon Jung;Hyungwoo Lee;Jung-Woo Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.1
    • /
    • pp.43-48
    • /
    • 2024
  • The discovery of a two-dimensional electron gas (2DEG) at the interface of LaAlO3 (LAO) and SrTiO3 (STO) substrates has sparked significant interest, providing a foundation for cutting-edge research in electronic devices based on complex oxide heterostructures. However, conventional methods for producing LAO thin films, typically employing techniques like pulsed laser deposition (PLD) within physical vapor deposition (PVD), are associated with high costs and challenges in precisely controlling the La and Al composition within LAO. In this study, we adopted a cost-effective alternative approach-solution-based processing-to fabricate LAO thin films and investigated their electrical properties. By adjusting the concentration of the precursor solution, we varied the thickness of LAO films from 2 to 65 nm and determined the sheet resistance and carrier density for each thickness. After vacuum annealing, the sheet resistance of the conductive channel ranged from 0.015 to 0.020 Ω·s-1, indicating that electron conduction occurs not only at the LAO/STO interface but also into the STO bulk region, consistent with previous studies. These findings demonstrate the successful formation and control of 2DEG through solution-based processing, offering the potential to reduce process costs and broaden the scope of applications in electronic device manufacturing.

A Study on Optimal Solution of Short Shot Using Modular Fuzzy Logic Based Neural Network (MENN) (모듈형 퍼지-신경망을 이용한 미성형 사출제품의 최적 해결에 관한 연구)

  • 강성남;허용정;조현찬
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.6
    • /
    • pp.465-469
    • /
    • 2001
  • In injection molding short shot is one of the frequent and fatal defects. Experts of Injection molding usually adjust process conditions such as injection time, mold temperature, and melt temperature because it is most economic way in time and cost. However, it is difficult task to find appropriate process conditions for troubleshooting of short shot as injection molding process is a highly nonlinear system and process conditions are coupled. In this paper, a modular fuzzy neural network (MFNN) has been applied to injection molding process to shorten troubleshooting time of short shot. Based on melt temperature and fill time, a reasonable initial mo이 temperature is recommenced by the NFNN, and then the mold temperature is inputted to injection molding process. Depending on injection molding result, specifically the insufficient quantity of an injection molded part. and appropriate mold temperature is recommend repeatedly through the NFNN.

  • PDF

Development of Knowledge Process-based Product Development Collaboration Framework (지식 프로세스 기반의 제품 개발 협업 프레임 워크 개발(I))

  • Park J.H.;Jeon J.W.;Kim J.W.;Lee J.U.;Lee G.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.147-152
    • /
    • 2005
  • In order to promptly cope with the various requirements of consumers, the environment of product development is being globalized in manufacturing industrials. For this reason, it is necessary to build up an efficient collaborative system for communication between remote area designers. Specially, while Internet and information technologies were merged with the manufacturing or business process, the research for collaborative system has become an important issue. Therefore, we propose a Web-based Engineering Collaboration Framework using SPS(SharePoint Portal Server) which is an enterprise business solution that integrates information from various system into one solution through single sign-on and enterprise application integration capabilities, with flexible deployment options and management tool. Through a Web-based Engineering Collaboration Framework, designers can exchange design information and have a conference in remote area designers or designer teams for alternative designs

  • PDF

An Expert System for Foult Diagnosis in a System (전력계통의 고장진단을 위한 전문가 시스템의 연구)

  • Park, Young-Moon;Lee, Heung-Jae
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.241-245
    • /
    • 1989
  • A knowledge based expert system is a computer program that emulates the reasoning process of a human expert in a specific problem domain. This paper presents an expert system to diagnose the various faults in power system. The developed expert system is represented considering two points; the possibility of solution and the fast processing speed. As uncertainties exist in the facts and rules which comprise the knowledge base of the expert system, Certainty Factor, which is based on the confirmation theory is used for the inexact reasoning. Also, as the diagnosis problem requires the inductive reasoning process in nature, the solution is imperfect and not unique in general. So the expert system is designed to generate all the possible hypothesis in order of the possibility and also it can explain the propagation procedure of the faults for each solution using the built in backtracking mechanism. In realization of the expert system, the processing speed is greatly dependent upon the problem representation, reasoning scheme and search strategy. So, in this paper the fault diagnosis problem itself is analysed from the view point of Artificial Intelligence and as a result, the expert system has the following basic features. 1) The certainty factor is adopted in the inference engine for inexact reasoning. 2) Problem apace is represented using the problem reduction technique. 3) Bidirectional reasoning scheme is used. 4) Best first search strategy is adopted for rapid processing. The expert system was developed us ing PROLOG language.

  • PDF

Multiresponse Surfaces Optimization Based on Evidential Reasoning Theory

  • He, Zhen;Zhang, Yuxuan
    • International Journal of Quality Innovation
    • /
    • v.5 no.1
    • /
    • pp.43-51
    • /
    • 2004
  • During process design or process optimization, it is quite common for experimenters to find optimum operating conditions for several responses simultaneously. The traditional multiresponse surfaces optimization methods do not consider the uncertain relationship among these responses sufficiently. For this reason, the authors propose an optimization method based on evidential reasoning theory by Dempster and Shafer. By maximizing the basic probability assignment function, which indicates the degree of belief that certain operating condition is the solution of this multiresponse surfaces optimization problem, the desirable operating condition can be found.

Analysis of mixture experimental data with process variables (공정변수를 갖는 혼합물 실험 자료의 분석)

  • Lim, Yong-B.
    • Journal of Korean Society for Quality Management
    • /
    • v.40 no.3
    • /
    • pp.347-358
    • /
    • 2012
  • Purpose: Given the mixture components - process variables experimental data, we propose the strategy to find the proper combined model. Methods: Process variables are factors in an experiment that are not mixture components but could affect the blending properties of the mixture ingredients. For example, the effectiveness of an etching solution which is measured as an etch rate is not only a function of the proportions of the three acids that are combined to form the mixture, but also depends on the temperature of the solution and the agitation rate. Efficient designs for the mixture components - process variables experiments depend on the mixture components - process variables model which is called a combined model. We often use the product model between the canonical polynomial model for the mixture and process variables model as a combined model. Results: First we choose the reasonable starting models among the class of admissible product models and practical combined models suggested by Lim(2011) based on the model selection criteria and then, search for candidate models which are subset models of the starting model by the sequential variables selection method or all possible regressions procedure. Conclusion: Good candidate models are screened by the evaluation of model selection criteria and checking the residual plots for the validity of the model assumption. The strategy to find the proper combined model is illustrated with examples in this paper.

Recovery of ammonia from wastewater by liquid-liquid membrane contactor: A review

  • Jang, Yoonmi;Lee, Wooram;Park, Jaebeom;Choi, Yongju
    • Membrane and Water Treatment
    • /
    • v.13 no.3
    • /
    • pp.147-166
    • /
    • 2022
  • Liquid-liquid membrane contactor (LLMC), a device that exchanges dissolved gas molecules between the two sides of a hydrophobic membrane through membrane pores, can be employed to extract ammoniacal nitrogen from a feed solution, which is transported across the membrane and accumulated in a stripping solution. This LLMC process offers the promise of improving the sustainability of the global nitrogen cycle by cost-effectively recovering ammonia from wastewater. Despite recent technological advances in LLMC processes, a comprehensive review of their feasibility for ammonia recovery is rarely found in the literature. Our paper aims to close this knowledge gap, and in addition to analyze the challenges and provide potential solutions for improvement. We begin with discussions on the operational principles of the LLMC process for ammonia recovery and membrane types and membrane configurations commonly used in the process. We then assess the performance of the process by reviewing publications that demonstrate its practical application. Challenges involved in the implementation of the LLMC process, such as membrane fouling, membrane wetting, and chemical requirements, are presented, along with discussions on potential strategies to address each. These strategies, including membrane modification, hybrid process design, and process optimization based on cost-benefit analysis, guide the reader to identify key areas of future research and development.

A Quality Assurance Process Model on Fault Management

  • Kim, Hyo-Soo;Baek, Cheong-Ho
    • Journal of Information Processing Systems
    • /
    • v.2 no.3 s.4
    • /
    • pp.163-169
    • /
    • 2006
  • So far, little research has been conducted into developing a QAPM (Quality Assurance Process Model) for telecommunications applications on the basis of TMN. This is the first trial of the design of TMN-based QAPM on fault management with UML. A key attribute of the QAPM is that it can easily identify current deficiencies in a legacy system on the basis of TMN architecture. Using an empirical comparison with the legacy systems of a common carrier validates the QAPM as the framework for a future mode of the operation process. The results indicate that this paper can be used to build ERP(Enterprise Resource Planning) for a telecommunications fault management solution that is one of the network management application building blocks. The future work of this paper will involve applying the QAPM to build ERP for RTE (Real Time Enterprise) fault management solution and more research on ERP design will be necessary to accomplish software reuse.

CO2 Capture from the Hydrogen Production Processes (수소생산 공정에서의 이산화탄소 포집)

  • Yeon Ki, Hong
    • Journal of Institute of Convergence Technology
    • /
    • v.12 no.1
    • /
    • pp.19-23
    • /
    • 2022
  • Interest in hydrogen production to respond to climate change is increasing. Until now, hydrogen has been mainly produced through the SMR (Steam Methane Reforming) process using natural gas. A large amount of CO2 is emitted in the hydrogen production process through SMR, and the gas flow including CO2 generated in the SMR process has different characteristics for each emission source, so it is important to apply a suitable CO2 capture process. In the case of PSA tail gas or synthesis gas, the applicability of an amine-based process has been confirmed or demonstrated close to a commercial level. However, in the case of the flue gas generated from the reformer, it is still difficult to apply the conventional amine-based process because the partial pressure of CO2 is relatively low. Energy-saving innovative absorbents such as phase separation absorbents can be a solution to these difficulties.

In-camera VFX implementation study using short-throw projector (focused on low-cost solution)

  • Li, Penghui;Kim, Ki-Hong;Lee, David-Junesok
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.10-16
    • /
    • 2022
  • As an important part of virtual production, In-camera VFX is the process of shooting actual objects and virtual three-dimensional backgrounds in real-time through computer graphics technology and display technology, and obtaining the final film. In the In-camera VFX process, there are currently only two types of medium used to undertake background imaging, LED wall and chroma key screen. Among them, the In-camera VFX based on LED wall realizes background imaging through LED display technology. Although the imaging quality is guaranteed, the high cost of LED wall increases the cost of virtual production. The In-camera VFX based on chroma key screen, the background imaging is realized by real-time keying technology. Although the price is low, due to the limitation of real-time keying technology and lighting conditions, the usability of the final picture is not high. The short-throw projection technology can compress the projection distance to within 1 meter and get a relatively large picture, which solves the problem of traditional projection technology that must leaving a certain space between screen and the projector, and its price is relatively cheap compared to the LED wall. Therefore, in the In-camera VFX process, short-throw projection technology can be tried to project backgrounds. This paper will analyze the principle of short-throw projection technology and the existing In-camera VFX solutions, and through the comparison experiments, propose a low-cost solution that uses short-throw projectors to project virtual backgrounds and realize the In-camera VFX process.