• Title/Summary/Keyword: Solution Technique

Search Result 3,478, Processing Time 0.027 seconds

Low-Temperatrue Synthesis of Mullite Powders by the Emulsion Technique (MgO-Al2O3-SiO2계 요업원료의 제조 및 소결특성 -에멀젼법에 의한 Mullite분체의 저온합성-)

  • 현상훈;이희수;송승룡
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.3
    • /
    • pp.361-370
    • /
    • 1989
  • Mullite powders were synthesized from the common solution of aluminum sulfate and sodium silicate solutions by the emulsion-hot kerosene technique. The reaction temperature and mechanism for mullitization and the characteristics of synthesized mullite powders were investigated. The effect of Na components introduced from sodium silicate solution on the physical property and microstructure of sintered mullite was also examined. It was proved that mullites were formed at 75$0^{\circ}C$ through the reaction mechanism of Na2O.2.2SiO2+3.3Al2(SO4)3longrightarrow1.1(3Al2O3.2SiO2)+Na2SO4+8.9SO3. Synthetic mullite powders consisted of the compositiion of 3Al2O3.2SiO2 and showed highly agglomeration of hollow spherical particles of 1${\mu}{\textrm}{m}$ diameter. The density and fracture toughness of sintered mullites were somewhat reduced because of the effect of a very small amount of residual Na components.

  • PDF

A Solution Procedure Based on Analytical Solutions for Laplace's Equation on Convex Polygons (해석해를 이용한 단순볼록 다각형에서의 라프라스방정식의 해법)

  • 김윤영;윤민수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.11
    • /
    • pp.2773-2781
    • /
    • 1993
  • Laplace's equation is, perhaps, the most important equation, which governs various kinds of physical phenomena. Due to its importance, there have been several numerical techniques such as the finite element method, the finite difference method, and the boundary element method. However, these techniques do not appear very effective as they require a substantial amount of numerical calculation. In this paper, we develop a new most efficient technique based on analytic solutions for Laplace's equation in some convex polygons. Although a similar approach was used for the same problem, the present technique is unique as it solves directly Laplace's equation with the utilization of analytical solutions.

On the Dynamic Response of Laminated Circular Cylindrical Shells under Dynamic Loads (동하중을 받는 복합재료 원통셸의 동적거동 해석)

  • 이영신;이기두
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.11
    • /
    • pp.2684-2693
    • /
    • 1993
  • The free vibration and dynamic response of cross-ply for CFRP and GFRP laminated circular cylindrical shells under dynamic loadings are investigated by using the first-order shear deformation shell theory. The modal analysis technique is used to develop the analytical solutions of simply supported cylindrical shells under dynamic load. The analysis is based on an expansion of the loads, displacements and rotations in a double Fourier series which satisfies the and boundary conditions of simply support. Analytical solution is assumed to be separable into a function of time and a function of position. In this paper, the considered load forces are step pulse, sine pulse, triangular(1, 2, 3) pulse and exponential pulse. The solution for a given loading pulse can be found by involving the convolution integral. The results show that the dynamic response are governed primarily by the natural period of the structure.

Fabrication of Microcantilever-based Biosensor Using the Surface Micromachining Technique (표면 미세 가공기술을 이용한 마이크로 캔틸레버의 제작과 바이오센서로의 응용)

  • Yoo Kyung-Ah;Joung Seung-Ryong;Kang C. J.;Kim Yong-Sang
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.1
    • /
    • pp.11-15
    • /
    • 2006
  • We propose an optical and an electrical detection methods for detecting various bio-molecules effectively with microcantilevers. The microcantilevers were fabricated employing surface micromachining technique that has attractive advantages in terms of cost efficiency, simplicity and ability of fabricating in array. The fluid cell system for injection of bio-molecular solution is fabricated using polydimethylsiloxane (PDMS) and a fused silica glass. The microcantilever is deflected with respect to the difference of the surface stress caused by the formation of self-assembled bio-molecules on the gold coated side of the microcantilever. It detected cystamine dihydrochloride and glutaraldehyde molecules and analyzed individual concentrations of the cystamine dihydrochloride solution. We confirm that the deflections of bending-up or bending-down are occurred by the bio-molecule adsorption and microcantilever can be widely used to a ${\mu}-TAS$ and a lab-on-a-chip for a potential detection of various bio-molecules.

A Study on Structural Analysis for Aircraft Gas Turbine Rotor Disks Using the Axisymmetric Boundary Integral Equation Method (축대칭 경계적분법에 의한 항공기 가스터빈 로터디스크 구조해석에 관한 연구)

  • Kong, Chang-Duk;Chung, Suk-Choo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.8
    • /
    • pp.2524-2539
    • /
    • 1996
  • A design process and an axisymmetric boundary integral equation method for precise structural analysis of the aircraft gas turbine rotor disk were developed. This axisymmetric boundary integral equation method for stress and steady-state thermal analysis was improved in solution accuracy by appling an implicit technique for Cauchy principal value evaluation, a subelement technique for weak singular integral evaluation and a double exponentical integral technoque for internal point solution near boundary surfaces. Stresses, temperatures, low cycle fatigue lifes and critical speeds for the turbine rotor disk of the thrust 1421 N class turbojet engine were analysed in a pratical calculation model problem.

Graphical technique for the flutter analysis of flexible bridge

  • Lee, Tzen Chin;Go, Cheer Germ
    • Wind and Structures
    • /
    • v.2 no.1
    • /
    • pp.41-49
    • /
    • 1999
  • The flutter of a bridge is induced by self-excited force factors such as lift, drag and aerodynamic moment. These factors are associated with flutter derivatives in the analysis of wind engineering. The flutter derivatives are the function of structure configuration, wind velocity and response circular frequency. Therefore, the governing equations for the interaction between the wind and dynamic response of the structure are complicated and highly nonlinear. Herein, a numerical algorithm through graphical technique for the solution of wind at flutter is presented. It provides a concise approach to the solution of wind velocity at flutter.

A RANDOM GENERALIZED NONLINEAR IMPLICIT VARIATIONAL-LIKE INCLUSION WITH RANDOM FUZZY MAPPINGS

  • Khan, F.A.;Aljohani, A.S.;Alshehri, M.G.;Ali, J.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.4
    • /
    • pp.717-731
    • /
    • 2021
  • In this paper, we introduce and study a new class of random generalized nonlinear implicit variational-like inclusion with random fuzzy mappings in a real separable Hilbert space and give its fixed point formulation. Using the fixed point formulation and the proximal mapping technique for strongly maximal monotone mapping, we suggest and analyze a random iterative scheme for finding the approximate solution of this class of inclusion. Further, we prove the existence of solution and discuss the convergence analysis of iterative scheme of this class of inclusion. Our results in this paper improve and generalize several known results in the literature.

PARAMETRIC GENERALIZED MULTI-VALUED NONLINEAR QUASI-VARIATIONAL INCLUSION PROBLEM

  • Khan, F.A.;Alanazi, A.M.;Ali, Javid;Alanazi, Dalal J.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.5
    • /
    • pp.917-933
    • /
    • 2021
  • In this paper, we investigate the behavior and sensitivity analysis of a solution set for a parametric generalized multi-valued nonlinear quasi-variational inclusion problem in a real Hilbert space. For this study, we utilize the technique of resolvent operator and the property of a fixed-point set of a multi-valued contractive mapping. We also examine Lipschitz continuity of the solution set with respect to the parameter under some appropriate conditions.

For Android-based VDI solutions, USB Redirection Technique (안드로이드 기반 VDI 솔루션에서의 USB 리다이렉션 적용 기법)

  • Lee, Jun-ha;Bae, Byoungmin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.606-608
    • /
    • 2014
  • The Study on the technique of applying the method USB redirection on Linux-based SPICE-GTK VDI solution for in (Virtual Desktop Infrastructure) VDI solution for Android-based USB redirection in this paper. VDI solutions are developed according to the development of many of the latest Android-based devices, but a VDI solution that supports USB redirection is limited. Also does not support USB redirection of Android to use the SPICE VDI solution. Therefore, the text presents the techniques applied to the Android-based VDI solutions applied to analyze the way USB redirection of SPICE-GTK VDI solution based on Linux. G PRO smartphone devices to install and use Linux-based VDI server to a test of the method applied in this paper, and the USB redirection applied VDI clients using a USB storage device, USB redirection is done playing files results you can check

  • PDF

TOPSIS-Based Multi-Objective Shape Optimization for a CRT Funnel (TOPSIS 를 적용한 CRT 후면유리의 다중목적 형상최적설계)

  • Lee, Kwang-Ki;Han, Jeong-Woo;Han, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.729-736
    • /
    • 2011
  • The technique for order preference by similarity to ideal solution (TOPSIS) is regarded as a classical method of multiple attribute decision making (MADM), often used to solve various decision-making or selection problems. It is based on the concept that the chosen alternative should have the shortest distance from the positive ideal solution and the farthest distance from the negative ideal solution. The TOPSIS can be applied to a design process for carrying out multi-objective shape optimization wherein the best and worst alternatives are to be decided. In this paper, multi-objective shape optimization using the TOPSIS and Rational Bezier curve was applied to the funnel of a cathode-ray tube (CRT). In order to minimize the weight and first principal stress, a new multi-objective shape optimization methodology is proposed, wherein the relative-closeness coefficients of the TOPSIS are defined as the performance indices of a multi-objective function and evaluated by response surface models. This methodology enables the designer to decide on the best solution from a number of design specification groups by examining the various conflicts between the weight and the first principal stress.