• Title/Summary/Keyword: Soluble particle

Search Result 230, Processing Time 0.029 seconds

Dissolution Monitoring of Geo-Soluble Mixtures (지반 소실 혼합재의 용해과정 모니터링)

  • Truong, Q. Hung;Byun, Yong-Hoon;Eom, Yong-Hun;Sim, Young-Jong;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.10
    • /
    • pp.111-122
    • /
    • 2009
  • Dissolution of some of geo-materials may yield the loss of the soil strength and the settlement of earth structures. The goal of this study is to monitor the several physical behaviors of soluble mixtures during dissolution. Sand-salt mixtures are used to monitor the meso to macro response including the settlements and shear waves. The mixtures of photoelastic and ice disks are used to monitor micro to meso behavior of soluble mixture including the void ratio, force chain, coordination number and horizontal force changes. In the sand-salt mixtures, shear waves are measured by using bender elements in conventional oedometer cells. In the photoelastic disk - ice disk mixtures, micro to meso response are measured by digital images and load cells. The shear wave velocity decreases at the initial stage of the dissolution, and then increases and approaches to asymptotic value. The larger dissoluble particle and the more random packing produces the severe horizontal fore change. After dissolution, the void increases and the coordination number decreases. This study demonstrates that the particle level behavior such as the changes of the force chain, void ratio, and coordination number affects the global behavior such as the change of the shear wave velocity and horizontal force of the system.

Characteristics of Metallic and Ionic Concentration in Fine Particle during Haze Days in Busan (부산 지역 연무 발생일의 미세먼지 중 금속과 이온 성분 농도 특성)

  • Jeon, Byung-Il
    • Journal of Environmental Science International
    • /
    • v.26 no.6
    • /
    • pp.767-778
    • /
    • 2017
  • This research investigates the characteristics of metallic and ionic elements in $PM_{10}$ and $PM_{2.5}$ on haze day and non-haze day in Busan. $PM_{10}$ concentration on haze day and non-haze day were 85.75 and $33.52{\mu}g/m^3$, respectively, and $PM_{2.5}$ on haze day and non-haze day were 68.24 and $23.86{\mu}g/m^3$, respectively. Contribution rate of total inorganic water-soluble ion to $PM_{10}$ mass on haze day and non haze day were 58.2% and 61.5%, respectively, and contribution rate of total water-soluble ion to $PM_{2.5}$ mass on haze day and non haze day were 58.7% and 64.7%, respectively. Also, contribution rate of secondary ion to $PM_{10}$ mass on haze day and non haze day were 52.1% and 47.5%, respectively, and contribution rate of secondary ion to $PM_{2.5}$ mass on haze day and non haze day were 54.4% and 53.6%, respectively. AC (anion equivalents)/CE (cation equivalents) ratio of $PM_{10}$ mass on haze day and non haze day were 1.09 and 1.0, respectively, and AC/CE ratios of $PM_{2.5}$ mass on haze day and non haze day were 1.12 and 1.04, respectively. Also, SOR (Sulfur Oxidation Ratio) of $PM_{10}$ mass on haze day and non haze day were 0.32 and 0.17, respectively, and SOR of $PM_{2.5}$ on haze day and non haze day were 0.30 and 0.15, respectively. Lastly, NOR (Nitrogen Oxidation Ratio) of $PM_{10}$ on haze day and non haze day were 0.17 and 0.08, respectively, and NOR of $PM_{2.5}$ on haze day and non haze day were 0.13 and 0.06, respectively.

Effect of Air Stagnation Conditions on Mass Size Distributions of Water-soluble Aerosol Particles (대기 정체와 수용성 에어로졸 입자의 질량크기분포의 관계)

  • Park, Seungshik;Yu, Geun-Hye
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.3
    • /
    • pp.418-429
    • /
    • 2018
  • Measurements of 24-hr size-segregated ambient particles were made at an urban site of Gwangju under high pressure conditions occurred in the Korean Peninsula late in March 2018. The aim of this study was to understand the effect of air stagnation on mass size distributions and formation pathways of water-soluble organic and inorganic components. During the study period, the $NO_3{^-}$, $SO_4{^{2-}}$, $NH_4{^+}$, water-soluble organic carbon (WSOC), and humic-like substances(HULIS) exhibited mostly bi-modal size distributions peaking at 1.0 and $6.2{\mu}m$, with predominant droplet modes. In particular, outstanding droplet mode size distributions were observed on March 25 when a severe haze occurred due to stable air conditions and long range transport of aerosol particles from northeastern regions of China. Air stagnation conditions and high relative humidity during the study period resulted in accumulation of primary aerosol particles from local emission sources and enhanced formation of secondary ionic and organic aerosols through aqueous-phase oxidations of $SO_2$, $NO_2$, $NH_3$, and volatile organic compounds, leading to their dominant droplet mode size distributions at particle size of $1.0{\mu}m$. From the size distribution of $K^+$ in accumulation mode, it can be inferred that in addition to the secondary organic aerosol formations, accumulation mode WSOC and HULIS could be partly attributed to biomass burning emissions.

study of the character and condition of Cr in the korea cement (국내 시멘트 중의 크로뮴 성상에 관한 연구)

  • Min, Kyung-San;Lee, Seung-Heun;Lee, Se-Jin;Lee, Seung-Hoon;Moon, Se-Heum;Jeong, Jae-Hong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.521-524
    • /
    • 2008
  • The purpose of this study is to identify the character and condition of Cr in the clinker and thereby contribute to the research for reduction in utilizing Cr in the cement manufacturing process. The concentration of chromium by cement particle size and the distribution of chromium by clinker mineral were measured. Next, correlation was considered between chromium and the soluble components in cement. As a result, in the range that cement particles were 20${\mu}$m or less, highest soluble hexavalent chromium was found. When the concentration of chromium was measured through mineral separation, belite and the interstitial phase were higher in chromium than in alite. soluble hexavalent chromium was contained in domestic cement less than 20ppm, and its conversion ratio was somewhat high as 10 to 40% or so.

  • PDF

The Relationship between the Estimated Water Content and Water Soluble Organic Carbon in PM10 at Seoul, Korea (서울시 PM10 내의 수용성 유기탄소와 수분함량과의 상관성 분석)

  • Lee, Seung Ha;Kim, Yong Pyo;Lee, Ji Yi;Lee, Seung Muk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.1
    • /
    • pp.64-74
    • /
    • 2017
  • In this study, we have analyzed relationship between the measured Water Soluble Organic Carbon (WSOC) concentrations and the estimated aerosol water content of $PM_{10}$ (particulate matter with an aerodynamic diameter of less than or equal to $10{\mu}m$) for the period between September 2006 and August 2007 at Seoul, Korea. Water content of $PM_{10}$ was estimated by using a gas/particle equilibrium model, Simulating composition of Atmospheric Particles at Equilibrium 2 (SCAPE2). The WSOC concentrations showed low correlation with Elemental Carbon (EC), but Water Insoluble Organic Carbon (WISOC) were highly correlated with EC. It seemed that hydrophilic groups were produced by secondary formation rather than primary formation. As with the previous studies, WSOC showed good correlation with secondary ions ($NO_3{^-}$, $SO_4{^{2-}}$, $NH_4{^+}$), especially WSOC was highly correlated with $NO_3{^-}$ that is a secondary ion formed by photochemical oxidation from more local sources than $SO_4{^{2-}}$. No apparent correlation between the measured WSOC and estimated water content was observed. However, WSOC showed good correlation with estimated water content when it was assumed that relative humidity was higher than the deliquescence relative humidity of the system. In conclusion, WSOC is correlated with water content by hygroscopic ions and it is expected that nitrate play an important role among the water content and WSOC.

The Effect of Crystallization Condition on the Crystallization Rate of Zeolite A (제올라이트 A의 결정화 속도에 대한 결정화 조건의 영향)

  • Chung, Kyeong-Hwan;Seo, Gon
    • Applied Chemistry for Engineering
    • /
    • v.4 no.1
    • /
    • pp.94-102
    • /
    • 1993
  • The effects of temperature and of $Na_2O$ and $SiO_2$ contents on the crystallization of zeolite A were studied, by examining crystallization curves and particle size distributions of final products at various crystallization conditions. Crystallization process could be simulated adopting the assumptions of constant linear growth rate and equilibrium between amorphous solid phase and soluble species. Rate constants were determined by comparing the simulated crystallization curves with experimental data. Rate constant for linear growth increased with temperature and crystallization rate at different mole ratio of $Na_2O/H_2O$ correlated reasonably well with increase of soluble species. The rate constant of crystallization did not increase with increase in mole ratio of $Na_2O/H_2O$, but the rate of nuclei formation and the fraction of soluble species were enhanced. The rate constants for linear growth of zeolite A were determined as $0.07{\sim}0.24{\mu}m{\cdot}min^{-1}$ at these experimental conditions Apparent activation energy was estimated as $49kJ{\cdot}mol^{-1}$.

  • PDF

All-trans Retinoic Acid-Associated Low Molecular Weight Water-Soluble Chitosan N anoparticles Based on Ion Complex

  • Kim Dong-Gon;Choi Changyong;Jeong Young-Il;Jang Mi-Kyeong;Nah Jae-Woon;Kang Seong-Koo;Bang Moon-Soo
    • Macromolecular Research
    • /
    • v.14 no.1
    • /
    • pp.66-72
    • /
    • 2006
  • The purpose of this study is to develop novel nanoparticles based on polyion complex formation between low molecular weight water-soluble chitosan (LMWSC) and all-trans retinoic acid (atRA). LMWSC nanoparticles encapsulating atRA based on polyion complex were prepared by mixing of atRA into LMWSC aqueous solution using ultrasonication. In FTIR spectra, the carbonyl group of atRA at 1690 $cm^{-1}$ disappeared or decreased when ion complexes were formed between LMWSC and atRA. In ${1}^H$ NMR spectra, specific peaks of atRA disappeared when atRA-encapsulated LMWSC (RAC) nanoparticles were reconstituted into $D_{2}O$ while specific peaks both of atRA and LMWSC appeared in $D_{2}O$/DMSO (1/3, v/v) mixture. XRD patterns also showed that the crystal peaks of atRA were disappeared by encapsulation into LMWSC nanoparticles. LMWSC nanoparticles encapsulating atRA have spherical shapes with particle size below 200 nm. The mechanism of encapsulation of atRA into LMWSC nanoparticles was thought to be an ion complex formation between LMWSC and atRA. LMWSC nanoparticles showed high atRA loading efficiency over 90$\%$ (w/w). AtRA was continuously released from nanoparticles over 10 days. In in vitro cell cytotoxicity test, free atRA showed higher cytotoxic effect against CT 26 colon carcinoma cell line on 1 day. However, RAC nanoparticles showed similar cytotoxicity against CT 26 cells on 2 day. These results suggest the potential for the introduction of LMWSC nanoparticles into various biomedical fields such as drug delivery.

Influence of Water Soluble Polymers on Crystallization of 5-Guanosine Monophosphate (구아노신일인산의 결정화에 대한 수용성 고분자의 영향)

  • Lee, Min-Kyung;Choi, Hye-Min;Kim, Woo-Sik;Hong, Jong-Pal;Lee, Jong-Hwi
    • Polymer(Korea)
    • /
    • v.33 no.2
    • /
    • pp.124-130
    • /
    • 2009
  • In presence of a polymer, the crystallization of low MW organic materials can be stopped at an intermediary step, where mesocrystals can be identified. A mesocrystal is defined as a superstructure of nanoparticles having polymer-adsorbed crystal faces on the scale of several hundred nanometers to micrometers. This study examined the effects of water soluble polymers and relevant parameters on the formation of guanosine-5'-monophosphate mesocrystals. It was observed in OM and SEM that GMP obtained in a polymer solution had a unique particle morphology different from the typical one of GMP. XRD analysis indicated that the polymer-directed crystallized GMP had a different polymorph of GMP. This result shows that the crystal structure of GMP can be changed by polymers. It was observed in TGA analysis that the polymer-directed crystallized GMP had a different water content, indicating a different type of hydrate.

Preparation and Characterization of O-Carboxymethyl Chitosan Ion-complexed Poly(L-Lysine) for Drug and Gene Delivery System (약물 및 유전자 전달체로 응용하기 위한 Poly(L-Lysine)이 결합된 O-Carboxymethyl Chitosan PEG의 제조와 특성)

  • Nam, Joung-Pyo;Kim, Young-Min;Park, Jin-Su;Lee, Eung-Jae;Choi, Chang-Yong;Jang, Mi-Kyeong;Nah, Jae-Woon
    • Applied Chemistry for Engineering
    • /
    • v.21 no.6
    • /
    • pp.643-647
    • /
    • 2010
  • O-carboxymethyl water-soluble chitosan (OCMCh) prepared for enhance the application of chitosan was modified with mthoxy polyethyleneglycol (mPEG) by ion-complex for long circulation in the blood. OCMCh-PEG-PLLs was prepared by forming ion-complex with OCMCh-PEG and Poly(L-Lysine) (PLL) for drug and gene delivery system. The physicochemcal characterisitcs of OCMCh-PEG-PLLs were investigated by FT-IR, $^1H$-NMR. These results showed that CMCh-PEG-PLLs were successfully syntehsized by ion-complex. Particle size distribution and zeta potential of the OCMCh-PEG-PLLs were determined using dynamic light scattering technique. Transmission electron microscopy (TEM) was also used to observe the morphology of the OCMCh-PEG-PLLs. OCMCh-PEG-PLLs have spherical shapes with particle size 290∼390 nm. OCMCh-PEG-PLLs were showed when the feeding amount of mPEG ratio was increased, particle size and zeta potential were decreased. Based on these results, it is possible to introduction of the OCMCh-PEG-PLLs into various biomedical fields such as drug and gene delivery system.

The PM2.5 Concentration and Components Characteristics in Miryang (밀양지역의 PM2.5 농도 및 성분특성)

  • Suh, Jeong-Min;Kim, Young-Sik;Jeon, Bo-Kyung;Choi, Kum-Chan;Ryu, Jae-Yong;Park, Jeong-Ho
    • Journal of Environmental Science International
    • /
    • v.16 no.12
    • /
    • pp.1355-1367
    • /
    • 2007
  • This study summarizes the relations among $PM_{2.5}$ concentration, water-soluble ions concentration, metallic element Components characteristics and SPSS in negative ion and metallic element of $PM_{2.5}$ particle in Miryang.(By the urban area, the industrial complex area and the suburban area according to the season) $PM_{2.5}$ concentration of total 72 samples collected from 3 sites turned out to range from 3.47 to 34.7 ${\mu}g/m^3$, and the average concentration was the suburban area-the kin nup(16.00 ${\mu}g/m^3$) > the urban area-the roof of the old Miryang university(10.32 ${\mu}g/m^3$) > the industrial complex-Sapo industrial complex(10.29 ${\mu}g/m^3$). In particular, the suburban area had $PM_{2.5}$ concentration 1.5 times those of urban area, industrial complex. It was thought although the site was suburban and farm-side without pollutants around, it had a higher concentration value influenced by external factors including the brickyard, small-scale incinerator, driving range construction, construction on the Daegu-Busan express and the widening of the four-lane road between Miryang-Anyang nearby. As for water-soluble ions among $PM_{2.5}$ particle collected in Miryang area, $SO4_{2^-}$ accounted for 60% and $NO_{3^-}$, was 30% in spring and summer. And $NO_{3^-}$ accounted for 50% and $SO4_{2^-}$ was 35% in fall and winter. The AI value of metallic Components among $PM_{2.5}$ particle collected in Miryang area had a high value influenced by the apartment complex construction and the extension work of road. The industrial complex area had Zn concentration 3 times, and Fe concentration 2 times those of urban area and suburb area. When it comes to the relation with metallic elements in urban area, the highest coefficient of correlation was between Cr-Fe with 0.85, and Pb-Cd turned out in the reverse correlation. Among metallic elements, the coefficients of correlation between Zn and Cr, Mn, Fe, NI were high in industrial complex area. The highest coefficient of correlation was between Mn-Zn with 0.88, meanwhile Ni and Cu, Cd turned out in the reverse correlation in the suburb area. These coefficients of correlation are attributed to the difference in pollutant sources, rather than difference in pollutant and non-pollutant.