• Title/Summary/Keyword: Solubility test

Search Result 222, Processing Time 0.028 seconds

A Study on the Improvement of the Wear Resistance of P-bronze (인청동의 내마모성향상에 대한 연구)

  • Song, Kun;Kwun, Sook-In;Cha, Young-Hyun
    • Tribology and Lubricants
    • /
    • v.4 no.1
    • /
    • pp.56-68
    • /
    • 1988
  • The wear resistance of P-bronze which is widely used as worm gear material was investigated. In order 1o study the effect of additional elements on the wear resistance of Pbronze, the applied load and sliding time were selected as variables, and SCM4, were used as against metal. The addition of Fe improve wear resistance, for it precipities hard Fe$_3$ P phase and the work hardening coefficients are lowered due to decreasing solubility of P. When Fe is added in conventional P-bronze, the alloy is rather sliding than forming wear debris by frictional force during wear test. Experimental results indicated that the wear mechanisms for P-bronze are mainly consisted of abrasive wear due to Beilby layer forming mechanism and adhesive wear due to thermally activated wear mechanism. Moreover, the weight loss is decreased in accordance with increasing load and time. However the rate of wear loss is decreased as the sliding time is increased.

Metabolic Engineering of Escherichia coli for the Biological Synthesis of 7-O-Xylosyl Naringenin

  • Simkhada, Dinesh;Kim, EuiMin;Lee, Hei Chan;Sohng, Jae Kyung
    • Molecules and Cells
    • /
    • v.28 no.4
    • /
    • pp.397-401
    • /
    • 2009
  • Flavonoids are a group of polyphenolic compounds that have been recognized as important due to their physiological and pharmacological roles and their health benefits. Glycosylation of flavonoids has a wide range of effects on flavonoid solubility, stability, and bioavailability. We previously generated the E. coli BL21 (DE3) ${\Delta}pgi$ host by deleting the glucose-phosphate isomerase (Pgi) gene in E. coli BL21 (DE3). This host was further engineered for whole-cell biotransformation by integration of galU from E. coli K12, and expression of calS8 (UDP-glucose dehydrogenase) and calS9 (UDP-glucuronic acid decarboxylase) from Micromonospora echinospora spp. calichensis and arGt-4 (7-O-glycosyltransferase) from Arabidopsis thaliana to form E. coli (US89Gt-4), which is expected to produce glycosylated flavonoids. To test the designed system, the engineered host was fed with naringenin as a substrate, and naringenin 7-O-xyloside, a glycosylated naringenin product, was detected. Product was verified by HPLC-LC/MS and ESI-MS/MS analyses. The reconstructed host can be applied for the production of various classes of glycosylated flavonoids.

Physicochemical Characteristics and Antioxidant activity, Antimutagenicity, and Cytotoxicity of Hot-water Extract of Hericium erinaceus (노루궁뎅이 버섯 열수 추출물의 이화학적 특성 및 항산화성, 항돌연변이성, cytotoxicity 분석)

  • Kim, Se Ryung;Kim, Meera
    • Korean journal of food and cookery science
    • /
    • v.28 no.5
    • /
    • pp.569-577
    • /
    • 2012
  • The physicochemical characteristics and biological activities, including antioxidant activity, antimutagenicity, and cytotoxicity of hot-water extract of fruiting body of Hericium erinaceus, were investigated in this study. Hot-water extract of fruiting body of Hericium erinaceus contained carbohydrate (7.86%), protein (10.91%), and ${\beta}$-glucan (3.62%). Water solubility of hot-water extract was 42.58%. Antioxidant activities of the extract were evaluated by ABTS assay and FRAP assay. The $IC_{50}$ value was 312.21 ${\mu}g/mL$ in ABTS assay. Antimutagenic activity of the extract was evaluated by Ames test. Antimutagenicity of hot-water extract (5 mg/mL) on Salmonella Typhimurium TA100 mutagenated by sodium azide (0.15 ${\mu}g/mg$) was 69.2%. Cytotoxicity of hot-water extract was also evaluated by MTT and SRB assay. The cytotoxicity was highest (83.95%) on Hep3B treated with 2,000 ${\mu}g/mL$ of hot-water extract in SRB assay. Therefore, it is suggested that hot-water extract of fruiting body of Hericium erinaceus has high antioxidant activity, antimutagenicity, and cytotoxicity.

Performance Test of Silicone Rubber Membrane by Gas Permeation Method (기체투과에 의한 Silicone Rubber Membrane의 기능성 시험)

  • Lee, Seung-Bum;Hong, In-Kwan
    • Elastomers and Composites
    • /
    • v.33 no.1
    • /
    • pp.37-43
    • /
    • 1998
  • The permeation of gas through polymer membrane at temperatures above its glass transition, generally occurs by a solution-diffusion mechanism. This mechanism is performed by the affinity difference between polymeric materials and gas molecules, and various technologies, such as copolymerization, impregnation and so on, have been researched to improve the affinity of polymeric material for the gases. In this study, permeability and selectivity for some gases were obtained from steady-state rates of gas permeation through silicone rubber membrane which is prepared by supercritical fluid extraction method. The permeability was measured by the volumetric method proposed by Barrer. Permeability was increased generally with temperature and permeation pressure. Silicone rubber membrane shows a higher permeability to $CO_2$ than to $O_2$, $N_2$. This results probably reflect the relatively high solubility of CO_2 in silicone rubber membrane, which is due to the affinity of $CO_2$ molecules. Since separation powers of $CO_2/N_2$, $CO_2/O_2$ were more than 200, and 100, respectively, it is able to separate $CO_2$ from the air, and the optimum temperature and pres-sure was 328.15 K, 60 cmHg respectively. In future, it is possible that the silicone rubber membrane can be used for separation or concentration of $CO_2$ through experiment for mixed gas separation.

  • PDF

The Cutaneous Protection for Detergent Formulation of Nature Wheat Protein Surfactant Complexes (천연 밀단백질/계면활성제 복합체의 세정에 있어 피부보호)

  • Jeong, Hwan-Kyeong;Park, Heung-Cho;Kim, Myung-Soo;Nam, Ki-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.79-85
    • /
    • 2002
  • The cutaneous tolerability of detergent formulations can be improved by means of suitable additives. They complex the surfactant molecules lowering the concentration of their free monomeric species. Proteins derivatives used as additives for detergency are usually prepared by partial hydrolysis of plant reserve proteins. The main purpose of the hydrolytic cleavage is to make them water soluble and suitable for liquid products. Water solubility and stability are obtained by means of complexation with surfactants which also increase their actual hydrophobicity, an important parameter affecting cosmetic properties of proteins. Transepidermal water loss (TEWL) and electric capacitance (EC) have been adopted as investigation technigues to evaluate the skin integrity/damage in vitro tests, The performance of native wheat protein / surfactant complexes has been compared with traditional protein hydrolysates as detergent additives. The results show a noticeable reduction of skin irritation in surfactant formulations with addition of native wheat protein.

Development of Propofol-Ioaded Microemulsion Systems for Parenteral Delivery

  • Ryoo Hyun-Ki;Park Chun-Woong;Chi Sang-Cheol;Park Eun-Seok
    • Archives of Pharmacal Research
    • /
    • v.28 no.12
    • /
    • pp.1400-1404
    • /
    • 2005
  • The aim of the present study was to develop the aqueous parenteral formulation containing propofol using o/w microemulsion systems. Propofol itself was chosen as the oil phase and its content was fixed to 1$\%$, w/w. Pseudoternary phase diagrams were constructed to obtain the concentration range of surfactant and cosurfacatnt and the optimum ratio between them for microemulsion formation. Consequently, the suitability of the chosen microemulsion system as a parenteral formulation was evaluated from the stability and hemolysis tests on that. Among the surfactants and cosurfactants screened, the mixture of Solutol HS 15-ethyl alcohol (5/1) showed the largest o/w mocroemulsion region in the phase diagram. When 1 $\%$ (w/w) of propofol was solubilized with 8$\%$ (w/w) of Solutol $HS^{circledR}$??? 15-ethyl alcohol (5/1), the average droplet size (150 nm) and the content of propofol in the systems were not significantly changed at 40$^{circ}C$ for 8 weeks. The hemolysis test showed that this formulation was nontoxic to red blood cells. In conclusion, propofol was successfully solubilized with the o/w microemulsion systems.

A Study on the Characteristics of Delayed Hydride Cracking in Zr-2.5Nb Pressure Tube with the Heating-up and Heat-treatment (열처리 및 가열방식에 따른 Zr-2.5Nb 압력관의 수소지연균열 특성에 관한 연구)

  • Na, Eun-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.69-73
    • /
    • 2009
  • The objective of this study was to obtain a better understanding of the delayed hydride cracking (DHC) of Zr-2.5Nb alloy. The DHC model has some defects: first, it cannot explain why the DHC velocity (DHCV) becomes constant regardless of an applied stress intensity factor, even though the stress gradient is affected by the applied stress intensity factor at the notch tip. Second, it cannot explain why the DHCV has a strong dependence on the method of approaching the test temperature by a cool-down or a heating-up, even under the same stress gradient, and third, it cannot predict any hydride size effect on the DHC velocity. The DHC tests were conducted on Zr-2.5Nb compact tension specimens with the test temperatures reached by a heating-up method and a cool-down method. Crack velocities were measured in hydrided specimens, which were cooled from solution-treatment temperatures at different rates by being furnace-cooled, water-quenched, and liquid nitrogen-quenched. The resulting hydride size, morphology, and distributions were examined by optical metallography. It was found that fast cooling rates, which produce very finely dispersed hydrides, result in higher crack growth rates. This different DHC behavior of the Zr-2.5Nb tube with the cooling rate after a homogenization treatment is due to the precipitation of the $\gamma$-hydrides only in the water-quenched Zr-2.5Nb tube. This experiment will provide supporting evidence that the terminal solid solubility of a dissolution (TSSD) of $\gamma$-hydrides is higher than that of $\delta$-hydrides.

Acute Toxicity of Dissolved Inorganic Metals, Organotins and Polycyclic Aromatic Hydrocarbons to Puffer Fish, Takifugu obscurus (황복(Takifugu obscurus)에 대한 중금속, 유기주석화합물 및 다환방향족탄화수소(PAHs)의 급성 독성)

  • Lee Jung-Suk;Lee Kyu-Tae;Kim Dong-Hoon;Kim Jin-Hyeong;Han Kyung-Nam
    • Environmental Analysis Health and Toxicology
    • /
    • v.19 no.2
    • /
    • pp.141-151
    • /
    • 2004
  • We exposed juvenile puffer fish, Takifugu obscurus(30 days after hatching) to various aqueous pollutants including 4 kinds of inorganic metals (Ag, Cd, Cu and Hg), 2 organotin compound.; (tributyltin [TBT] and triphenyltin[TPhT]) and 5 polycyclic aromatic hydrocarbon (PAH) compounds (chrysene, fluoranthene, naphthalene, phenanthrene and pyrene) to estimate median lethal concentrations (LC50s) of each pollutant after the 96-hour acute exposure. Among the inorganic metals, Hg (52 $\mu\textrm{g}$/L; 96-h LC50) was most toxic to test animals and followed by Ag (164 $\mu\textrm{g}$/L), Cu (440 $\mu\textrm{g}$/L) and Cd (1180 $\mu\textrm{g}$/L). Aqueous TBT was more toxic between the two organotins; the 96-h LC50 for TBT (5.1 $\mu\textrm{g}$/L) was 3 times lower than that of TPhT (17.3 $\mu\textrm{g}$/L). The acute toxicity of PAH compounds was highest for chrysene (1.5 $\mu\textrm{g}$/L; 96-h LC50) and decreased in the order of pyrene (65 $\mu\textrm{g}$/L) > fluoranthene (158 $\mu\textrm{g}$/L) > phenanthrene (432 $\mu\textrm{g}$/L) > naphthalene (8690 $\mu\textrm{g}$/L). The toxicity of PAH compounds wat closely related to their physico-chemical characteristics such as $K_{ow}$ and water solubility, and well explained by simple QSAR relationship. The sensitivity of puffer fish to various inorganic and organic pollutants was generally comparable to various fish species widely used as standard test species in previous studies and further evaluation should be conducted to develop adequate testing procedure for T. obscurus when used in various toxicity tests.

Effect of Cr content on the FAC of pipe material at 150℃ (150℃에서 원전 2차측 배관재료의 Cr함량에 따른 유체가속부식 특성)

  • Park, Tae Jun;Kim, Hong Pyo
    • Corrosion Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.274-279
    • /
    • 2013
  • Flow accelerated corrosion (FAC) of the carbon steel piping in nuclear power plants (NPPs) has been major issue in nuclear industry. During the FAC, a protective oxide layer on carbon steel dissolves into flowing water leading to a thinning of the oxide layer and accelerating corrosion of base material. As a result, severe failures may occur in the piping and equipment of NPPs. Effect of alloying elements on FAC of pipe materials was studied with rotating cylinder FAC test facility at $150^{\circ}C$ and at flow velocity of 4m/s. The facility is equipped with on line monitoring of pH, conductivity, dissolved oxygen(DO) and temperature. Test solution was the demineralized water, and DO concentration was less than 1 ppb. Surface appearance of A 106 Gr. B which is used widely in secondary pipe in NPPs showed orange peel appearance, typical appearance of FAC. The materials with Cr content higher than 0.17wt.% showed pit. The pit is thought to early degradation mode of FAC. The corrosion product within the pit was enriched with Cr, Mo, Cu, Ni and S. But S was not detected in SA336 F22V with 2.25wt.% Cr. The enrichment of Cr and Mo seemed to be related with low, solubility of Cr and Mo compared to Fe. Measured FAC rate was compared with Ducreaux's relationship and showed slightly lower FAC rate than Ducreaux's relationship.

Surfactant Effects upon Dissolution Patterns of Carbamazepine Immediate Release Tablet

  • Lee Hyeontae;Park Sang-Ae;Sah Hongkee
    • Archives of Pharmacal Research
    • /
    • v.28 no.1
    • /
    • pp.120-126
    • /
    • 2005
  • The objective of this study was to investigate the effects of sodium lauryl sulfate upon the saturation solubility of carbamazepine, its dissolution kinetics, and $T_{50\%}$ defined as the time required for dissolving $50\%$ of carbamazepine. Water, 0.1N-HCI, and phosphate buffers at pH 4.0 and 6.8 containing 0.1, 0.5, 1, and $2\%$ sodium lauryl sulfate were used as dissolution media. The dissolution study was conducted by using the USP dissolution apparatus II with an agitation rate of 75 rpm. Samples of the dissolution media were taken in 7, 15, 30, 45, 60, 75, and 90 min, and the amounts of carbamazepine were determined spectrophotometrically at 285 nm. All dissolution data were fitted well into a four-parameter exponential equation: $Q\;=\;a(1\;-\;e^{-bxt})\;+\;c(1\;-\;e^{-dxt})$. In this equation Q represented $\%$ carbamazepine dissolved at a time t, and a, b, c, and d were constants. This equation led to the calculation of dissolution rates at various time points and $T_{50\%}$. It was found that the dissolution rate of carbamazepine was directly proportional to the aqueous concentration of sodium lauryl sulfate. In addition, under our experimental conditions $T_{50%}$ values ranged from 37.8 to 4.9 min. It was interesting to note that $T_{50\%}$ declined rapidly as the surfactant concentration increased from 0.1 to $0.5\%$, whereas it declined more slowly at concentrations greater than $1\%$. These results clearly demonstrated that the dissolution rate of carbamazepine and duration of its dissolution test could be tailored by optimizing the amount of sodium lauryl sulfate in a dissolution medium.