• 제목/요약/키워드: Solitary wave

검색결과 107건 처리시간 0.023초

고립파에 의한 경사면에서의 부유사 제승의 불확실성에 관한 실험적 연구 (An Experimental Study on The Uncertainty of Suspended Sediment Pickup on Slope by Solitary Wave)

  • 조재남;정석일;이승오
    • 한국안전학회지
    • /
    • 제32권6호
    • /
    • pp.61-67
    • /
    • 2017
  • Suspended sediment transport plays principal roles in morphological process of natural coastals. It is needed to understand the reason why interaction characteristics of solitary wave and suspended sediment. The present study shows that suspended sediment pickup derived on solitary wave celerity. The 2D prismatic open channel length is 12 m, width is 0.8 m, height is 0.75 m and slope is 1/6. Generation of solitary wave is used by rapidly opening the sluice gate. Bottom surface sediments are laid movable slope section by 0.03 m thickness and experimental sediments are used anathracite and jumoonjin sand. Techniques of suspended sediment pickup rate are designed equipment ASC(Absorptive Suspended sediment Collector). It could directly absorb 5 points suspended sediment by channel water depth. Solitary wave celerity is measued by ADV(Acoustic Doppler Velocimeter). Mounted two video cameras(Model No. : Sony, HDR-XR550) are used to image processing of suspended sediment concentration and turbidity. Suspended sediment pikcup rate(Einstein, 1950) is analyzed to nondimensionalization based on solitary wave celerity. The suspended sediment pickup rate is suggested that more effective plunging breaking type than spilling. The results indicates fundamental suspended sediment transport mechanism between solitary wave celerity and suspended sediment pickup based on laboratory experiments. Finally, the present study suggests that suspended sediment pickup rate by solitary wave is used only characteristics of sediment and solitary wave celerity.

SPH simulation of solitary wave interaction with coastal structures

  • Cai, Guozhen;Luo, Min;Wei, Zhaoheng;Khayyer, Abbas
    • Ocean Systems Engineering
    • /
    • 제12권3호
    • /
    • pp.285-300
    • /
    • 2022
  • This paper adopts the Smoothed Particle Hydrodynamics (SPH) open-source code SPHinXsys to study the solitary wave interaction with coastal structures. The convergence properties of the model in terms of particle size and smoothing length are tested based on the example of solitary wave propagation in a flat-bottom wave flume. After that, the solitary wave interactions with a suspended submerged flat plate and deck with girders are studied. The wave profile and velocity field near the surface of the structures, as well as the wave forces exerted onto the structures are analyzed.

고립파(지진해일)의 파형분포가 불투과 경사면의 처오름에 미치는 영향 (Effects of Waveform Distribution of Tsunami-Like Solitary Wave on Run-up on Impermeable Slope)

  • 이우동;김정욱;허동수
    • 한국해양공학회지
    • /
    • 제33권1호
    • /
    • pp.76-84
    • /
    • 2019
  • For decades, solitary waves have commonly been used to simulate tsunami conditions in numerical studies. However, the main component of a tsunami waveform acts at completely different spatial and temporal distributions than a solitary waveform. Thus, this study applied a 2-D numerical wave tank that included a non-reflected tsunami generation system based on Navier-Stokes equations (LES-WASS-2D) to directly simulate the run-up of a tsunami-like solitary wave on a slope. First, the waveform and velocity due to the virtual depth factor were applied to the numerical wave tank to generate a tsunami, which made it possible to generate the wide waveform of a tsunami, which was not reproduced with the existing solitary wave approximation theory. Then, to validate the applied numerical model, the validity and effectiveness of the numerical wave tank were verified by comparing the results with the results of a laboratory experiment on a tsunami run-up on a smooth impermeable 1:19.85 slope. Using the numerical results, the run-up characteristics due to a tsunami-like solitary wave on an impermeable slope were also discussed in relation to the volume ratio. The maximum run-up heights increased with the ratio of the tsunami waveform. Therefore, the tsunami run-up is highly likely to be underestimated compared to a real tsunami if the solitary wave of the approximation theory is applied in a tsunami simulation in a coastal region.

고립파와 파도패킷의 상호작용 (On the Interaction of a Solitary Wave and a Wave-Packet)

  • 김종언;장택수
    • 대한조선학회논문집
    • /
    • 제60권5호
    • /
    • pp.341-350
    • /
    • 2023
  • In this paper, numerical experiments are performed to examine the collision between a solitary wave and a wave-packet (dispersive wave) in shallow water. We attempt to introduce the improved Boussinesq equation governing the experiments, which is solved by using a semi-analytical approach, called Pseudo-parameter Iteration method(PIM). Using various numerical experiments, we have observed that the wave-packet (propagating dispersive wave) experiences a phase shift after collision with a solitary wave. This phenomenon may be considered as a nonlinear wave-wave interaction in shallow water.

Sluice Gate를 이용한 고립파 발생조건에 따른 형상 및 압력 특성에 관한 실험적 연구 (Experimental Study of Shape and Pressure Characteristics of Solitary Wave generated by Sluice Gate for Various Conditions)

  • 조재남;김동현;이승오
    • 한국안전학회지
    • /
    • 제31권2호
    • /
    • pp.70-75
    • /
    • 2016
  • Recently, coastal erosion has been widely in progress and the erosion level becomes also serious in the world wide, espeically in East Sea in Korea. Since it would threaten the life, economics and security risk, it is necessary to much comprehend the reason why coastal erosion has occurred according to the geographical characteristics. Meanwhile, analysis about hydrodynamics of the solitary wave such as tunami in swash zone is needed for the best management practice of coastal erosion. Solitary wave is nonlinear wave and can be reproduced in the laboratoy scale by openning suddenly a sluice gate with water head difference, of which methodology was found in the literature, since it could be simply determined by a significant wave height. Thus, in this sutdy the generation of solitary wave was experimentalized using the sluice gate. Experimental conditions were classified by angles of a beach slope, a water level in a beach slope and a difference of water level between in a headtank and a channel bed. Two kinds of dimensionless analyses based from experimental results in this study were presented; the first analysis indicates nondimensionalization between the wave height and the water level in a beach slope in order to investigate characteristics of solitary wave approaching the beach. The second shows the other nondimensionalization between dynamic pressure and static pressure on a beach slope to investigate the relationship between wave breaking and wave pressure. Under the same conditions as laboratory experiments, the numerical results computed with a SWAN model embedded in FLOW 3D were compared in terms of wave height, and pressure on the beach slope, which shows good agreement with each other. Overall results from this study could provide fundamental hydraulic data for the reliabile verification of numerical simulation results about coastal erosion in swash zone caused by solitary waves.

THE ION ACOUSTIC SOLITARY WAVES AND DOUBLE LAYERS IN THE SOLAR WIND PLASMA

  • Choi C.R.;Lee D.Y.;Kim Yong-Gi
    • Journal of Astronomy and Space Sciences
    • /
    • 제23권3호
    • /
    • pp.209-216
    • /
    • 2006
  • Ion acoustic solitary wave in a plasma consisting of electrons and ions with an external magnetic field is reinvestigated using the Sagdeev's potential method. Although the Sagdeev potential has a singularity for n < 1, where n is the ion number density, we obtain new solitary wave solutions by expanding the Sagdeev potential up to ${\delta}n^4$ near n = 1. They are compressiv (rarefactive) waves and shock type solitary waves. These waves can exist all together as a superposed wave which may be used to explain what would be observed in the solar wind plasma. We compared our theoretical results with the data of the Freja satellite in the study of Wu et al. (1996). Also it is shown that these solitary waves propagate with a subsonic speed.

THE EFFECT OF DUST PARTICLES ON ION ACOUSTIC SOLITARY WAVES IN A DUSTY PLASMA

  • Choi, Cheong-Rim;Lee, Dae-Young;Kim, Yong-Gi
    • Journal of Astronomy and Space Sciences
    • /
    • 제21권3호
    • /
    • pp.201-208
    • /
    • 2004
  • In this paper we have examined the effect of dust charge density on nonlinear ion acoustic solitary wave which propagates obliquely with respect to the external magnetic field in a dusty plasma. For the dusty charge density below a critical value, the Sagdeev potential $\Psi1(n)$ has a singular point in the region n < 1, where n is the ion number density divided by its equilibrium number density. If there exists a dust charge density over the critical value, the Sagdeev potential becomes a finite function in the region n < 1, which means that there may exist the rarefactive ion acoustic solitary wave. By expanding the Sagdeev potential in the small amplitude limit up to on4 near n=1, we find the solution of ion acoustic solitary wave. Therefore we suggest that the dust charge density plays an important role in generating the rarefactive solitary wave.

고립파의 수직 벽면 반사와 Stokes 감쇠에 관한 개선된 부시네스크 방정식을 이용한 수치해석 연구 (Numerical Study on the Reflection of a Solitary Wave by a Vertical Wall Using the Improved Boussinesq Equation with Stokes Damping)

  • 박진수;장택수
    • 대한조선학회논문집
    • /
    • 제59권2호
    • /
    • pp.64-71
    • /
    • 2022
  • In this paper, we simulate the collision of a solitary wave on a vertical wall in a uniform water channel and investigate the effect of damping on the amplitude attenuation. In order to take into account the damping effect, we introduce the Stokes damping whose dissipation is dependent on the velocity of wave motion on the surface of a thin layer of oil. That is, we use the improved Boussinesq equation with Stokes damping to describe the damped wave motion. Our work mainly focuses on the amplitude attenuation of a propagating solitary wave, which may depend on the Stokes damping together with the initial position and initial amplitude of the wave. We utilize the method of images and a powerful numerical tool (functional iteration method) for solving the improved Boussinesq equation, yielding an effective numerical simulation. This enables us to find the amplitudes of the incident wave and reflected one, whose ratio is a measure of the (wave) amplitude attenuation. Accordingly, we have shown that the reflection of a solitary wave by a vertical wall is dependent on not only the initial amplitude and position of a solitary but the Stokes damping.

수리/수치파동수조에서 안정적인 쓰나미 조파를 위한 고찰 (A Study on Stable Generation of Tsunami in Hydraulic/Numerical Wave Tank)

  • 이우동;박종률;전호성;허동수
    • 대한토목학회논문집
    • /
    • 제36권5호
    • /
    • pp.805-817
    • /
    • 2016
  • 본 연구에서는 쓰나미에 대응할 수 있는 다양한 파형의 고립파를 수리/수치파동수조에서 안정적으로 생성시키기 위하여 기존의 고립파 근사이론에 관한 검토를 수행하였다. 그리고 이 근사이론식을 토대로 다양한 고립파의 파형을 추정할 수 있는 두 가지 방법을 제안하였다. 이 방법들은 기존의 고립파 근사식들을 토대로 파형분포조절계수와 가상수심계수를 적용하여 다양한 파형 및 유속을 추정하는 절차를 거친다. 새롭게 제안한 고립파 추정방법들을 수리/수치파동수조의 조파에 적용하였다. 그 결과, 수리파동수조에서는 조파기의 위치정보신호를 추정할 수 있을 뿐만 아니라, 기존의 수리모형실험의 입력신호와 매우 유사한 것을 확인할 수 있었다. 수치파동수조에서는 파랑을 생성하기 위하여 고립파의 파형 및 유속을 적용하였다. 그리고 기존의 고립파 근사이론으로는 재현할 수 없었던 쓰나미의 파형을 조파할 수 있었고, 기존 실험결과와 높은 일치도를 나타내는 것을 확인할 수 있었다. 이로써 수리/수치파동수조에서 안정적인 쓰나미를 생성하기 위하여 제안한 두가지 추정방법의 타당성 및 유효성을 확인할 수 있었다.

고립파(지진해일) 작용하의 수중방파제에 의한 파랑제어 (Wave Control by Submerged Breakwater under the Solitary Wave(Tsunami) Action)

  • 이광호;김창훈;정성호;김도삼
    • 대한토목학회논문집
    • /
    • 제28권3B호
    • /
    • pp.323-334
    • /
    • 2008
  • 본 연구는 유체장에 대한 Navier-Stokes방정식과 자유수면을 효과적으로 추적할 수 있는 VOF법을 지배방정식으로 사용하는 수치파동수로를 적용하여 고립파(지진해일)에 대한 이열투과성수중방파제의 파랑제어기능을 수치적으로 검토한다. 고립파의 조파는 수치파동수로의 계산영역내에 설치된 수치조파기(내부조파소스)를 이용하였으며, 구조물에 의한 고립파의 파랑변형을 논한 기존의 연구결과와 본 해석결과를 비교함으로써 본 연구의 타당성을 확인하였다. 이로부터 일렬 및 이열의 투과성수중방파제에 의한 고립파의 파랑변형, 전달율, 반사율 및 에너지플럭스를 포함한 파동장의 변화를 수치시뮬레이션하였다. 비록 한정된 범위의 연구결과이지만, $h_0/h=0.925$($h_0$는 수중방파제의 천단고, h는 수심)를 갖는 이열수중방파제의 경우에 수중방파제 배치간격 $l/L_{eff}>0.4$(여기서, $L_{eff}$는 고립파의 유효거리)의 범위에서 입사파랑의 파고는 이열수중방파제에 의해 약 60%까지 감쇠되는 것을 알 수 있었으며, 일렬수중방파제에 비해 반사율이 약 47%정도로 증가하고, 전달율은 약 18%로 감소하였다. 따라서, 본 연구에서 고립파의 제어를 위해 처음으로 도입되는 투과성이열수중방파제는 일렬의 경우와 대비하여 경제적으로, 그리고 보다 효과적으로 고립파를 제어하는 것을 알 수 있었다.