• Title/Summary/Keyword: Solidification microstructure

Search Result 241, Processing Time 0.023 seconds

The Effect of Solidification Rate on Solidification Behavior in IN792+Hf Superalloy (IN792+Hf 초내열합금의 응고거동에 미치는 응고속도의 영향)

  • Bae, Jae-Sik;Kim, Hyeon-Cheol;Lee, Jae-Hyeon;Yu, Yeong-Su;Jo, Chang-Yong
    • Korean Journal of Materials Research
    • /
    • v.11 no.6
    • /
    • pp.502-507
    • /
    • 2001
  • The effect of solidification rate on the microstructure of directionally solidified IN792+ Hf superalloy has been studied. Solidification sequence and precipitation behavior of the alloy have been analysed by microstructural observation. The script carbide transformed to faceted carbide with decreasing solidification rates. The incorporation of ${\gamma}$ phase into the faceted carbide was due to dendritic growth of carbides. Some elongated carbide bars formed along the grain boundaries at a solidification rate of 0.5$\mu\textrm{m}$/s. Two zones, ${\gamma}$' forming elements enriched zone and depleted zone, were found in the residual liquid area. Eutectic ${\gamma}$/${\gamma}$' nucleated in the f forming elements enriched zone. Formation of eutectic ${\gamma}$/${\gamma}$' increased the ratio of (Ti+Hf+Ta+W)/Al and induced η phase precipitation. The ratio of (Ti+Hf+Ta+W)/Al decreased at lower solidification rates due to sufficient back diffusion in the residual liquid area. Hence, the Precipitation of the η Phase efficiently suppressed at the lower solidification rate.

  • PDF

Semi-Solid Forming Process of Thin Products (박막 성형품의 반응고 성형공정)

  • 서판기;정용식;강충길
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.60-63
    • /
    • 2003
  • Semi-solid forming is the process of stirring alloy during solidification, making the mixture of liquid and solid, solidifying it, reheating it to the solid-liquid coexistent temperature, and then injecting this semi solid slurry into dies. In the semi-solid die casting process, it is very important to find out the correlation of injection condition, microstructure and mechanical properties. Especially, an improper injection condition is the main cause of liquid segregation and non-homogeneous mechanical properties due to the difference of solid fraction according to the position of the products. To ensure the database requisite to the semi-solid die casting product, it is essential to acquire the mechanical properties considering liquid segregation to the injection condition. In this study, the effect of injection condition on liquid segregation, formability, microstructure and mechanical properties in a thin product was investigated.

  • PDF

High performance ultrafine-grained Ti-Fe-based alloys with multiple length-scale phases

  • Zhang, Lai-Chang
    • Advances in materials Research
    • /
    • v.1 no.1
    • /
    • pp.13-29
    • /
    • 2012
  • In order to simultaneously enhance the strength and plasticity in nanostructured / ultrafine-grained alloys, a strategy of introducing multiple length scales into microstructure (or called bimodal composite microstructure) has been developed recently. This paper presents a brief overview of the alloy developement and the mechanical behavior of ultrafine-grained Ti-Fe-based alloys with different length-scale phases, i.e., micrometer-sized primary phases (dendrites or eutectic) embedded in an ultrafine-grained eutectic matrix. These ultrafine-grained titanium bimodal composites could be directly obtained through a simple single-step solidification process. The as-prepared composites exhibit superior mechanical properties, including high strength of 2000-2700 MPa, large plasticity up to 15-20% and high specific strength. Plastic deformation of the ultrafine-grained titanium bimodal composites occurs through a combination of dislocation-based slip in the nano-/ultrafine scale matrix and constraint multiple shear banding around the micrometer-sized primary phase. The microstructural charactersitcs associated to the mechanical behaivor have been detailed discussed.

Effect of Fe Addition on Mechanical Properties and Microstructure of As-Extruded Hypereutectic Al-Si-Fe Alloy (Fe가 첨가된 과공정 Al-Si-Fe합금 압출재의 기계적특성 및 미세조직에 관한 연구)

  • Lee, S.D.;Kim, D.H.;Beck, A.R.;Lim, S.G.
    • Transactions of Materials Processing
    • /
    • v.28 no.3
    • /
    • pp.123-129
    • /
    • 2019
  • Hypereutectic Al-Si alloys have been widely utilized for wear-resistant components in the automotive industry. In order to expand the application of Hypereutectic Al-Si alloys, the addition of alloying elements forming a stable precipitate at high temperature is required. Thermally stable inter metallic compounds can be formed through the addition of transition elements such as Fe, Ni to Al alloys. However, the amount of transition element to be added to Al alloys is limited due to their low solid solubility. Also, hypereutectic Al-Si-Fe alloys form coarse primary Si phases and needle-shaped intermetallic compounds during solidification in the general casting processes. In this study, the effects of the destruction of Intermetallic compound and Si phase are investigated via hot extrusion. Both the microstructure and mechanical properties are discussed under different extrusion conditions.

Microstructures and Electrochemical Properties of Si-M (M : Cr, Ni) as Alloy Anode for Li Secondary Batteries (리튬이차전지용 Si-M (M : Cr, Ni) 합금 음극의 미세구조와 전기화학적 특성)

  • Lee, Sung-Hyun;Sung, Jewook;Kim, Sung-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.2
    • /
    • pp.68-74
    • /
    • 2015
  • To compare the microstructure and electrochemical properties between two binary alloys (Cr-Si, Ni-Si), two composition of binary alloys with the same capacity were selected using phase-diagram and prepared by matrix-stabilization method to suppress the volume expansion of Si by inactive-matrix. Master alloys were made by Arc-melting followed by fine structured ribbon sample preparation by Rapid Solidification Process (RSP, Melt-spinning method) under the same conditions. Also powder samples were produced by wet grinding for X-Ray Diffraction (XRD) and electrochemical measurements. As predicted from the phase diagram, only active-Si and inactive-matrix ($CrSi_2$, $NiSi_2$) were detected. The results of Scanning Electron Microscope (SEM) and Transmission Electron Microscopy - Energy Dispersive X-ray Spectroscopy (TEM-EDS) show that Cr-Si alloy has finer microstructure than Ni-Si alloy, which was also predictable through phase diagram. The electrochemical properties related to microstructure were evaluated by coin type full- and half-cells. Separately, self-designed test-cells were used to measure the volume expansion of Si during reaction. Volume expansion of Cr-Si alloy electrode with finer microstructure was suppressed significantly and improved in cycle capability, in comparison Ni-Si alloy with coarse microstructure. From these, we could infer the correlation of microstructure, volume expansion and electrochemical degradation and these properties might be predicted by phase diagram.

Decomposition Behavior of Secondary Solidification Phase During Heat Treatment of Squeeze Cast Al-Cu-Si-Mg (용탕단조 Al-Cu-Si-Mg합금의 열처리시 제2응고상의 분해거동)

  • Kim, Yu-Chan;Kim, Do-Hyang;Han, Yo-Sub;Lee, Ho-In
    • Journal of Korea Foundry Society
    • /
    • v.17 no.6
    • /
    • pp.560-568
    • /
    • 1997
  • The dissolution behavior of secondary solidification phases in squeeze cast Al-3.9wt%Cu-1.5wt%Si-1.0wt%Mg has been studied using a combination of optical microscope, image analyzer, scanning electron microscope(SEM), energy dispersive spectrometer(EDS), X-ray diffractometer(XRD) and differential thermal analyzer (DTA). Special emphasis was placed on the investigation of the effects of the nonequilibrium heat treatment on the dissolution of the second solidification phases. Ascast microstructure consisted of primary solidification product of ${\alpha}-Al$ and secondary solidification products of $Al_2Cu$, $Mg_2Si$ and $Al_2CuMg$. Equilibrium and non-equilibrium solution treatments were carried out at the temperatures of $495^{\circ}C$, $502^{\circ}C$ and $515^{\circ}C$ for 3 to 5 hours. The amount of the dissolved secondary phases increased with increasing solution treatment temperature, for example, area fractions of $Al_2Cu$, $Mg_2Si$ and $Al_2CuMg$ were approximately 0%, 1.6% and 4.2% after solution treatment at $495^{\circ}C$ for 5hours, and were approximately 0%, 0.36% and 2% after solution treatment at $515^{\circ}C$ for 5hours. The best combination of tensile properties was obtained when the as-cast alloy was solution treated at $515^{\circ}C$ for 3hours followed by aging at $180^{\circ}C$ for 10 hours. Detailed DTA and TEM study showed that the strengthening behavior during aging was due to enhanced precipitation of the platelet type fine ${\theta}'$ phase.

  • PDF

The Mixing Ratio Effect of Insert Metal Powder and Insert Brazing Powder on Microstructure of the Region Brazed on DS Ni Base Super Alloy (일방향응고 Ni기 초내열합금 천이액상화산접합부의 미세조직에 미치는 모재와 삽입금속 분말 혼합비의 영향)

  • Ye Chang-Ho;Lee Bong-Keun;Song Woo-Young;Oh In-Seok;Kang Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.23 no.6
    • /
    • pp.99-105
    • /
    • 2005
  • The mixing ratio effect of the GTD-111(base metal) powder and the GNI-3 (Ni-l4Cr-9.5Co-3.5Al-2.5B) powder on TLP(Transient Liquid Phase) bonding phenomena and mechanism was investigated. At the mixing ratio of the base metal powder under $50wt\%$, the base metal powders fully melted at the initial time and a large amount of the base metal near the bonded interlayer was dissolved by liquid inter metal. Liquid insert metal was eliminated by isothermal solidification which was controlled by the diffusion of B into the base metal. The solid phases in the bonded interlayer grew epitaxially from the base metal near the bonded interlayer inward the insert metal during the isothermal solidification. The number of grain boundaries farmed at the bonded interlayer corresponded with those of base metal. At the mixing ratio above $60wt\%$, the base metal powder melted only at the surface of the powder and the amount of the base metal dissolution was also less at the initial time. Nuclear of solids firmed not only from the base metal near the bonded interlayer but also from the remained base metal powder in the bonded interlayer. Finally, the polycrystal in the bonded interlayer was formed when the isothermal solidification finished. When the isothermal solidification was finished, the contents of the elements in the boned interlayer were approximately equal to those of the base metal. Cr-W borides and Cr-W-Ta-Ti borides formed in the base metal near the bonded interlayer. And these borides decreased with the increasing of holding time.

Study for Heat Treatment Optimization of Titanium Hollow Casted Billet (타이타늄 중공마더빌렛 주조재의 열처리공정 최적화 연구)

  • Youn, Chang-Suk;Park, Yang-Kyun;Lee, Hyung-Wook;Lee, Dong-Geun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.2
    • /
    • pp.68-73
    • /
    • 2019
  • ${\alpha}$-titanium alloy has a relatively low heat treatment characteristic and it is mainly subjected to heat treatment for residual stress, recovery or dynamic recrystallization. In this study, commercially pure titanium hollow castings was fabricated by gravity casting. Heat treatments were carried out at $750^{\circ}C$, $850^{\circ}C$ and $950^{\circ}C$ to investigate the effect of post-heat treatment on microstructure and mechanical properties. Beta-transus temperature ($T_{\beta}$) was about $913^{\circ}C$, and equiaxed microstructure was shown at temperature below $T_{\beta}$ and lath-type microstructure at temperature above $T_{\beta}$. Microstructure and mechanical properties did not show any significant difference in the direction of solidification for titanium hollow billet, so it can be seen that it was a well-made material for extrusion process. The optimum heat treatment condition of hollow billet castings for the seamless tube production was $850^{\circ}C$, 4 hr, FC, indicating a combination of equiaxed microstructure and appropriate mechanical properties.

Microstructural Characteristics of Al-Cr Coated Zr Alloy Fabricated by Laser Surface Melting Process (레이저 표면 용융공정으로 Al-Cr 코팅한 Zr합금의 미세조직 특성)

  • Kim, Jeong-Min;Lee, Jae-Cheol;Kim, Il-Hyun;Kim, Hyun-Gil
    • Korean Journal of Materials Research
    • /
    • v.27 no.10
    • /
    • pp.563-568
    • /
    • 2017
  • In this study, the coating of an Al-Cr layer on the surface of a Zircaloy-4 alloy was carried out through plasma pretreatment coating and a laser surface melting process. Two different conditions for laser treatment, severe or minimal surface melting of the Zr alloy substrate, were applied to form the final coating. When there was significant surface melting of the Zr alloy, the solidification microstructure of the newly formed coating layer was mainly composed of needle-shaped $Al_3Zr$, Al(Cr) and $Al_7Cr$ phases. On the other hand, the solidification microstructure of the coating layer was mainly composed of Al(Cr) and $Al_7Cr$ phases when there was minimal surface melting of Zr base in the laser process. However, when the coating was maintained at $1100^{\circ}C$ for 2 hours, significant inter-diffusion occurred between the phases in the coating. As a result, the upper part of the coating layer was observed to mainly consist of $Al_3Zr$ and $Al_8Cr_5$ phases, regardless of the laser treatment conditions.

Effect of Heat Input of Outside Weld on Low Temperature Toughness of Inside Weld for Multiple Electrode SA Welded API 5L X70 with Sour Gas Resistance (내부식용 API 5L X70 다전극 SAW 용접부의 내면 저온인성에 미치는 외면 입열의 영향)

  • An, Hyun-Jun;Lee, Hee-Keun;Park, Young-Gyu;Eun, Seong-Su;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.32 no.1
    • /
    • pp.93-101
    • /
    • 2014
  • This study aims to investigate the effect of heat input of outside SAW weld on low temperature toughness($-20^{\circ}C$) of inside SAW weld for API 5L X70 with sour gas resistance. As increasing heat input of the outside weld, low temperature toughness of the inside weld was decreased. Especially, in spite of the same heat input, the value of low temperature toughness was fluctuated. On the basis of fracture and microstructure analysis, the low temperature toughness is correlated with the fracture area ratio of shear lips and four kinds of fracture sections. These sections were divided with size and shape of dimple correlated with grain boundary ferrite and cleavage correlated acicular and polygonal ferrite in grain. Therefore, it was seen that these sections were two of final solidification area in the inside weld and the outside weld, no reheated zone and reheated zone in the inside weld. In conclusion, it is thought that the difference of low temperature toughness at the same heat input is due to the fact that each of impact test specimens could have the different microstructure, even though the notch was machined under the error tolerance of 1mm. It is because the final solidification area of the inside weld is very narrow.