• 제목/요약/키워드: Solidification

검색결과 1,326건 처리시간 0.031초

아연 합금 웜기어의 중력 주조 공정을 위한 주조 방안 설계 및 해석에 관한 연구 (A Study on the Gating System and Simulation for Gravity Casting of ZnDC1 Worm Gear)

  • 이운길;김재현;진철규;천현욱
    • 한국산업융합학회 논문집
    • /
    • 제24권5호
    • /
    • pp.589-596
    • /
    • 2021
  • In this study, the optimum gating system was designed, and the two zinc alloy worm gears were manufactured in single process by applying a symmetrical gating system with 2 runners. The SRG ratio is set to 1 : 0.9 : 0.6, and the cross-sectional shapes such as sprue, runner and gate are designed. In order to determine whether the design of the gating system is appropriate, casting analysis was carried out. It takes 4.380 s to charge the casting 100%, 0.55 to 0.6 m/s at the gates and solidification begins after the casting is fully charged. The amount of air entrapment is 2% in the left gear and 6% in the right gear. Hot spots occurred in the center hole of the gear, and pores were found to occur around the upper part of the hole. Therefore, the design of the casting method is suitable for worm gears. CT analysis showed that all parts of worm gear were distributed with fine pores and some coarse pores were distributed around the central hole of worm gear. The yield strength and tensile strength were 220 MPa, 285 MPa, and the elongation rate was 8%. Vickers hardness is 82 HV.

선택적 레이저 용융법으로 제조한 316L 스테인리스강의 기계적 이방성에 미치는 기공의 영향 (Effect of Porosity on Mechanical Anisotropy of 316L Austenitic Stainless Steel Additively Manufactured by Selective Laser Melting)

  • 박정민;전진명;김정기;성유진;박순홍;김형섭
    • 한국분말재료학회지
    • /
    • 제25권6호
    • /
    • pp.475-481
    • /
    • 2018
  • Selective laser melting (SLM), a type of additive manufacturing (AM) technology, leads a global manufacturing trend by enabling the design of geometrically complex products with topology optimization for optimized performance. Using this method, three-dimensional (3D) computer-aided design (CAD) data components can be built up directly in a layer-by-layer fashion using a high-energy laser beam for the selective melting and rapid solidification of thin layers of metallic powders. Although there are considerable expectations that this novel process will overcome many traditional manufacturing process limits, some issues still exist in applying the SLM process to diverse metallic materials, particularly regarding the formation of porosity. This is a major processing-induced phenomenon, and frequently observed in almost all SLM-processed metallic components. In this study, we investigate the mechanical anisotropy of SLM-produced 316L stainless steel based on microstructural factors and highly-oriented porosity. Tensile tests are performed to investigate the microstructure and porosity effects on mechanical anisotropy in terms of both strength and ductility.

열간압출을 이용한 고신뢰성 n형 Bi-Te-Se계 열전소자 제조 (Preparation of n-type Bi-Te-Se-based Thermoelectric Materials with Improved Reliability via hot Extrusion Process)

  • 황정윤;김용남;이규형
    • 마이크로전자및패키징학회지
    • /
    • 제26권2호
    • /
    • pp.45-49
    • /
    • 2019
  • 높은 신뢰성의 n형 Bi-Te-Se계 열전소자 제조를 위한 열간압출 공정을 확립하였다. 용융-응고 공정을 이용하여 Bi-Te-Se 원료잉곳을 합성하였으며, 고에너지 볼밀을 이용하여 평균 ${\sim}30{\mu}m$ 크기의 분말로 분쇄하였다. 일축가압 공정으로 분말을 직경 20 mm의 디스크 형태로 성형한 후 압출용 몰드 설계-제작 및 열간압출 공정 온도와 압력을 제어하여 성형체로부터 00l 방향으로 결정 배향된 지름 1.8 mm의 원통형 고밀도 압출체를 제조하였다. 상온에서 최대 ${\sim}4.1mW/mK^2$의 높은 파워팩터를 나타냈으며, zone melting 공정으로 제조한 상용 열전소재와 비교하여 2배 이상 향상된 기계적 강도 (~50 MPa)를 구현하였다.

Efficiency calibration of a coaxial HPGe detector-Marinelli beaker geometry using an 152Eu source prepared in epoxy matrix and its validation by efficiency transfer method

  • Yucel, Haluk;Zumrut, Senem;Nartturk, Recep Bora;Gedik, Gizem
    • Nuclear Engineering and Technology
    • /
    • 제51권2호
    • /
    • pp.526-532
    • /
    • 2019
  • In this study, an in-house $^{152}Eu$ calibration source was produced from a custom epoxy matrix with a density of ${\rho}=1.14g\;cm^{-3}$, which is chemically stable and durable form after its solidification. The homogeneity of $^{152}Eu$ in matrix was obtained better than 98%. For a Marinelli beaker geometry, an efficiency calibration procedure was applied to a n-type, coaxial, 78.5% relative efficient HPGe detector in the energy range of 121.7-1408.0 keV by using in-house $^{152}Eu$ calibration source. Then the measured efficiencies for Marinelli geometry were compared with the results calculated by MEFFTRAN and ANGLE softwares for the validation. Although MEFFTRAN and ANGLE have two different efficiency transfer algorithms to calculate the efficiencies, they usually need to use a reliable and accurate reference efficiency values as input data. Hence, reference efficiency values were obtained experimentally from a multinuclide standard source for the same detector-Marinelli geometry. In the present source characterization, the corrections required for self-absorption and true coincidence summing effects for $^{152}Eu$ gamma-rays were also obtained for a such close counting geometry condition. The experimental results confirmed the validity of efficiency calculations obtained by MEFFTRAN and ANGLE softwares that are calculation tools.

Microstructural Analysis of Slags using Raman Micro Spectroscope

  • Park, Su Kyoung;Kwon, In Cheol;Lee, Su Jeong;Huh, Il Kwon;Cho, Nam Chul
    • 보존과학회지
    • /
    • 제35권2호
    • /
    • pp.145-152
    • /
    • 2019
  • The metal-manufacturing method and smelting temperature of ancient metal-production processes have been studied by analyzing the principal elements and microstructures of slag. However, the microstructure of slag varies according to the solidification cooling rate and types and relative amounts of various oxides contained within the smelting materials. Hence, there is a need for accurate analysis methods that allow slag to be distinguished by more than its composition or microstructure. In this study, the microstructures of slag discharged as a result of smelting iron sands collected from Pohang and Gyeongju, as well as the slag excavated from the Ungyo site in Wanju, were analyzed by using metalloscopy, scanning election microscopy-energy dispersine X-ray spectroscopy(SEM-EDS) and wavelength dispersive X-ray fluorenscence(WD-XRF). Furthermore, the microcrystals were accurately characterized by performing Raman micro-spectroscopy, which is a technique that can be used to identify the microcrystals of slags. SEM-EDS analysis of Pohang slag indicated that its white polygonal crystals could be Magnetite; however, Raman micro-spectroscopy revealed that these crystals were actually $ulv{\ddot{o}}spinel$. Raman micro-spectroscopy and SEM-EDS were also used to verify that the coarse white dendritic structures observed in the Gyeongju-slag were $W{\ddot{u}}stites$. Additionally, the Wanju slag was observed to have a glassy matrix, which was confirmed by Raman micro-spectroscopy to be Augite. Thus, we have demonstrated that Raman micro-spectroscopy can accurately identify slag microcrystals, which are otherwise difficult to distinguish as solely based on their chemical composition and crystal morphology. Therefore, we conclude that it has excellent potential as a slag analysis technique.

Al-Ni 전구체의 연소합성 발포에 의한 Al3Ni 폼과 할로우 파이프의 복합구조체 제작 및 폼의 충진성과 기공상태 조사 (Combustion of Al-Ni Precursor Al3Ni Foam Manufacture of Composite Structure with Hollow Pipe and Filling of Foam and Investigation of Pore Condition)

  • 한창석;진성윤;권혁구
    • 한국재료학회지
    • /
    • 제29권10호
    • /
    • pp.617-622
    • /
    • 2019
  • In order to develop a process for manufacturing a composite structure of an intermetallic compound foam and a hollow material, the firing and pore form of the Al-Ni precursor in a steel pipe are investigated. When the Al-Ni precursor is foamed in a hollow pipe, if the temperature distribution inside the precursor is uneven, the pore shape distribution becomes uneven. In free foaming, no anisotropy is observed in the foaming direction and the pore shape is isotropic. However, in the hollow pipe, the pipe expands in the pipe axis direction and fills the pipe. The interfacial adhesion between $Al_3Ni$ foam and steel pipe is excellent, and interfacial pore and reaction layer are not observed by SEM. In free foaming, the porosity is 90 %, but it decreases to about 80 % in the foam in the pipe. In the pipe foaming, most of the pore shape appears elongated in the pipe direction in the vicinity of the pipe, and this tendency is more remarkable when the inside pipe diameter is small. It can be seen that the pore size of the foam sample in the pipe is larger than that of free foam, because coarse pores remain after solidification of the foam because the shape of the foam is supported by the pipe. The vertical/horizontal length ratio expands along the pipe axis direction by foaming in the pipe, and therefore circularity is reduced.

폐 Magnesia-Carbon Powder를 이용한 연약지반 고형화 및 강도 증진에 대한연구 (Study on Solidification and Strength of Soft Soils by Using Waste Magnesia-Carbon Powder)

  • 최훈;송명신;강현주;정의담;김주성
    • 한국지반환경공학회 논문집
    • /
    • 제12권1호
    • /
    • pp.35-40
    • /
    • 2011
  • 제철소에서 용강을 제조할 때에 사용되는 전로(Converter)나 레이들(Ladle) 등의 노체용 내장 내화물로 마그네시아-카본벽돌이 많이 사용되고 있다. 그러나 이렇게 사용되고 있는 마그네시아-카본 벽돌의 경우 교체 이후 전량폐기되고 있다. 이렇게 폐기되는 폐 마그네시아-카본 벽돌을 분쇄하여 활성화재를 이용한 연약지반 및 오염지반의 고화재로 사용함으로써 연약지반 및 오염지반의 고형화를 통하여 연약지반의 강성증가와 함께 오염지반에서 발생하는 중금속 및 기타 유해물질의 용출에 대한 안정화에 영향을 미칠 것으로 판단된다. 본 논문에서는 폐 마그네시아-카본을 이용한 연약지반의 강도 증가에 대한 내용에 대하여 나타내었다.

용탕단조법으로 제조된 AZ51-xSn 마그네슘 합금의 미세파괴기구 (Microfracture Mechanism of Squeeze Cast AZ51-xSn Magnesium Alloys)

  • 김병호;도정현;이성학;박익민
    • 대한금속재료학회지
    • /
    • 제47권12호
    • /
    • pp.797-810
    • /
    • 2009
  • A study was made of the effects of a Sn addition on the microstructure and microfracture mechanism of squeeze cast AZ51-xSn magnesium alloys. Microstructural observation, in situ fracture testing, and fractographic observations were conducted on these alloys to clarify the microfracture process. The microstructural analyses indicated that $Mg_2Sn$ particles as well as $Mg_{17}Al_{12}$ particles precipitated mainly along the solidification cell boundaries; the volume fraction of these hard particles increased as the amount of added Sn increased, with increased the strength. From in situ fracture observations of the AZ51-7Sn alloy, coarse precipitates located on the cell boundaries worked as easy crack propagation sites and caused abrupt intercellular fracturing. On the other hand, the overall fracture properties of the AZ51-3Sn alloy improved because crack propagation proceeded into the Mg matrix rather than into the cell boundaries as twins developed actively, as confirmed by an R-curve analysis. These findings suggest that the addition of 3~5 wt.% Sn is effective in improving both the tensile and fracture properties on the basis of well-developed twins, the blocking of crack propagation, and crack blunting.

일방향응고 니켈기 초내열합금 GTD111에서 천이 액상확산 접합용 삽입금속의 개발에 관한 연구 (Development of Insert Metals for the Transient Liquid Phase Bonding in the Directional Solidified Ni Base Super Alloy GTD 111)

  • 이봉근;오인석;김길무;강정윤
    • 대한금속재료학회지
    • /
    • 제47권4호
    • /
    • pp.242-247
    • /
    • 2009
  • On the Transient Liquid Phase Bonding (TLPB) phenomenon with the MBF-50 insert metal at narrow gap (under 100), it takes long time for the bonding and the homogenizing. Typically, isothermal solidification is controlled by the diffusion of depressed element of B and Si. However, the amount of B and Si in the MBF-50 filler metal is large. This is reason of the long bonding time. Also, the MBF-50 filler metal did not contained Al and Ti which are ${\gamma}^{\prime}$ phases former. This is reason of the long homogenizing time. From the bonding phenomenon with the MBF-50 insert metal, we search main factors on the bonding mechanism and select several insert-metals for using the wide-gap TLPB. New insert-metals contained Al and Ti which are ${\gamma}^{\prime}$ phases former and decrease the B then the MBF-50. When the new insert-metal was used on the TLPB, the bonding time was decreased about 1/10 times and homogenizing heat treatment was no needed. In spite of the without homogenizing, the volume fraction of ${\gamma}^{\prime}$ phases in the boned interlayer was equal to homogenizing heat treated specimen which was TLPB with the MBF-50. Finally, the new insert metal named WG1 for the wide-gap TLPB is more efficient then the MBF-50 filler metal without decreasing the bonding characteristic.

Pivalic Acid-Ethanol 및 Succinonitrile-Salol 계에서의 수지상정 선단의 형상 (Dendrite Tip Shapes of Pivalic Acid-Ethanol and Succinonitrile-Salol Systems)

  • 석명진;박영민;오승탁;장시영
    • 대한금속재료학회지
    • /
    • 제49권7호
    • /
    • pp.570-576
    • /
    • 2011
  • The shape of a dendrite tip has long been approximated by a paraboloid of revolution, but many attempts have been made as well to more accurately match the dendrite tip profile using other mathematical functions: power function, 4th order polynomial, and hyperbolic function. In the present work, dendrite tip shapes were matched by parabolic function. The differences between the dendrite tip shapes of pivalic acid(PVA)-ethanol(Eth) and succinonitrile(SCN)-salol systems, characterized by anisotropic and isotropic solid-liquid interfacial properties, respectively, were quantitatively treated using shape parameters. The PVA-Eth system showed a slightly higher Z/R value than the SCN-salol system, their Z/R values lying in the range 2-4. (Z is the distance from the tip beyond which the parabolic fit starts to deviate from the profile, and R the tip radius.) ${\lambda}_P$ is the distance from the tip beyond which side branching starts to appear, and is larger in the PVA-Eth system than the SCNsalol system. ${\lambda}_P$ is different for both sides of the 2-dimensional dendrite profile. The difference of ${\lambda}_P$ between both sides of the dendrite is larger for PVA-Eth system than for SCN-salol, implying that the dendrite of PVA-Eth is less symmetric than that of SCN-salol.