• Title/Summary/Keyword: Solid-state reaction

Search Result 846, Processing Time 0.034 seconds

Effect of Agglomeration of $Nb_20_5$ on Formation Reaction, Sintering and Dielectric Properties in$Pb(MG_{1/3}Nb_{2/3})O_3$ (원료분체 $Nb_20_5$의 응집상태가 $Pb(MG_{1/3}Nb_{2/3})O_3$소결, 유전특성에 미치는 영향)

  • 조영국;김진호;박병옥;조상희
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.2 no.1
    • /
    • pp.51-59
    • /
    • 1992
  • Effect of agglomeration of $Nb_20_5$ of the same primary particle size on formation reaction and sintering of $Pb(Mg_{1/3}\;Nb_{2/3})O_3$ was examined. Both solid state reaction and molten salt synthesis were adopted. With decreasing agglomeration of $Nb_20_5$ increased the rate of formation reaction of perovskite PMN in solid state reaction, but had little influence in molten salt synthesis. It was concluded that the increase in the inhomogeneity of the dispersion state of intermediate pyrochlore with increasing agglomeration of $Nb_20_5$ retarded the formation reaction of perovskite PMN in solid state reaction, while had little influnce in molten salt synthesis due to its solution - precipitation mechanism -mainly depends on powder surface area.

  • PDF

On Electric Field Induced Processes in Ionic Compounds

  • Schmalzried, H.
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.6
    • /
    • pp.499-505
    • /
    • 2001
  • The behaviour of ionic compound crystals under combined chemical and externally applied electrical potential gradients is discussed. Firstly, a systematic overview is given. Then a formal analysis follows. The transport equations of the ions and the electric defects predict that even with reversible electrodes demixing, and in particular decomposition of the compound will occur if the applied d.c. current density is sufficiently high. These predictions are illustrated by appropriate experiments. With the help of the solid solution (Me, Fe)O, where Fe-ions are the dilute species, we investigate experimentally the behaviour of a ternary ionic crystal under a d.c. electric current load. All the compounds were placed in a galvanic cell, and the internal reactions which then could be observed were driven by the electric field in this cell. In addition, we discuss the influence of the electric field on the classical solid state reaction AX+BX=ABX$_2$, if again the reaction couple is placed in a galvanic cell.

  • PDF

Solid-state Synthesis of $LiFePO_4$ Cathode Materials for Lithium Ion Batteries Controling Particles Size of Precuror

  • Jun, Dae-Kyoo;Li, Hu;Park, Kyung-Hee;Gu, Hal-Bon;Park, Bok-Kee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.350-351
    • /
    • 2007
  • The $LiFePO_4$ as cathode materials for lithium ion batteries was synthesized by the solid-state reaction using ballmiller and employed one step heat treatment at $650^{\circ}C$. The influence of the heating time on the structure, particle size and cycle performance was investigated. $LiFePO_4$ heated at $650^{\circ}C$ for 3 h exhibited higher discharge capacity of 140 mAh/g and excellent cycle performance.

  • PDF

Synthesis of akermanite bioceramics by solid-state reaction and evaluation of its bioactivity (고상반응법에 의한 아커마나이트 분말의 합성 및 생체활성도 평가)

  • Go, Jaeeun;Lee, Jong Kook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.5
    • /
    • pp.191-198
    • /
    • 2022
  • Zirconia and titanium alloys, which are mainly used for dental implant materials, have poor osseointegration and osteogenesis abilities due to their bioinertness with low bioactivity on surface. In order to improve their surface bioinertness, surface modification with a bioactive material is an easy and simple method. In this study, akermanite (Ca2MgSi2O7), a silicate-based bioceramic material with excellent bone bonding ability, was synthesized by a solid-state reaction and investigated its bioactivity from the analysis of surface dissolution and precipitation of hydroxyapatite particles in SBF solution. Calcium carbonate (CaCO3), magnesium carbonate (MgCO3), and silicon dioxide (SiO2) were used as starting materials. After homogeneous mixing of starting materials by ball milling and the drying of at oven, uniaxial pressing was performed to form a compacted disk, and then heat-treated at high temperature to induce the solid-state reaction to akermanite. Bioactivity of synthesized akermanite disk was evaluated with the reaction temperature from the immersion test in SBF solution. The higher the reaction temperature, the more pronounced the akermanite phase and the less the surface dissolution at particle surface. It resulted that synthesized akermanite particles had high bioactivity on particle surface, but it depended on reacted temperature and phase composition. Moderate dissolution occurred at particle surfaces and observed the new precipitated hydroxyapatite particles in synthetic akermanite with solid-state reaction at 1100℃.

Single-Step Solid-State Synthesis of CeMgAl11O19:Tb Phosphor

  • Park, Byoung-Kyu;Lee, Seoung-Soo;Kang, Jun-Kun;Byeon, Song-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.9
    • /
    • pp.1467-1471
    • /
    • 2007
  • The green-emitting CeMgAl11O19:Tb (CMAT) phosphor has been prepared at 1200 °C by the simple solid-state reaction using AlF3 as a self-flux. This preparation temperature is much lower than those (1500-1700 °C) for conventional solid-state reaction and spray pyrolysis method. In particular, the complete process to produce high-quality phosphor particles was carried out through the single-step heat treatment of the mixture of corresponding oxide-type metal sources. An addition of AlF3 as a self-flux significantly decreased the crystallization temperature of CMAT with plate-like shape. The particle morphology could be controlled from plate-like to spherical by using H3BO3 as an additional flux. Thus, an optimal morphology and luminescence characteristics of CMAT were achieved when both AlF3 and H3BO3 fluxes were simultaneously used. Compared with conventional solid-state process, which is accompanied by the calcination step(s), and other alternative liquid solution techniques such as sol-gel method and spray pyrolysis, no use of active precursors and liquid media that are harmful to the environment is a distinctive advantage for the industrial purpose.

Characteristic of Hydrogen Generation from Solid-State NaBH4 and Fuel Cell Operation for Fuel Cell Aircraft (연료전지 항공기를 위한 고체상태 NaBH4의 수소발생 및 연료전지 구동 특성)

  • Lee, Chung-Jun;Kim, Tae-Gyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.9
    • /
    • pp.858-865
    • /
    • 2011
  • This paper describes the characteristics of hydrogen generation from solid-state $NaBH_4$ and fuel cell operation for fuel cell aircraft. The solid-state $NaBH_4$ was used for a high hydrogen storage density, and was reacted with hydrochloric acid to generate hydrogen. The hydrogen generation rate for the solid-state $NaBH_4$ reaction was measured at various conditions. As a result, the hydrogen generation rate was increased with the feed rate and concentration of hydrochloric acid, while not be affected by the reaction temperature. A fuel cell was connected with the solid-state $NaBH_4$ hydrogen generator. The stable power output was obtained at the gradual and sudden increases of electric loads.

Lithium Lanthanum Titanate Solid Electrolyte for All-Solid-State Lithium Microbattery (전고상박막전지를 위한 (Li,La)TiO3 고체전해질의 제조와 특성)

  • 안준구;윤순길
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.9
    • /
    • pp.930-935
    • /
    • 2004
  • $({Li}_{0.5}0{La}_{0.5}){TiO}_3$ (LLTO) solid electrolyte was grown on LiCo{O}_2 (LCO) cathode films deposited on $Pt/Ti{O}-2/Si{O}_2/Si$ substrate using pulsed laser deposition for all-solid-state lithium microbattery. LLTO solid electrolyte exhibits an amorphous phase at various deposition temperatures. LLTO films deposited at 10$0^{\circ}C$ showed a clear interrace without any chemical reaction with LCO, and showed an initial discharge capacity of 50 $\mu$Ah/cm$^2$-$\mu$m and capacity retention of 90 % after 100 cycles with Li anode in 1mol$ LiCl{O}_4$ in propylene carbonate (PC). The increase of capacity retention in LLTO/LCO structure than LCO itself was attributed to the structural stability of LCO cathode films by the stacked LLTO. The cells of LLTO/LCO with LLTO grown at $100^{\circ}C$ showed a good cyclic property of 63.6 % after 300 cycles. An amorphous LLTO solid electrolyte is possible for application to solid electrolyte for all-solid-state lithium microbattery.

Elucidation of the Vulcanization Structures of Filled cis-1,4-Polybutadiene Rubber by Solid State Carbon-13 NMR Spectroscopy (고체상태 NMR을 이용한 cis-1,4-polybutadiene 충진고무의 가황가교 구조 규명)

  • Kim, Su-Dong;Park, Eun-Kyung;Ryu, Ju-Whan
    • Elastomers and Composites
    • /
    • v.43 no.4
    • /
    • pp.281-287
    • /
    • 2008
  • Using solid state $^{13}C$ NMR, polybutadiene rubber vulcanizates were qualitatively and quantitatively analyzed. In the filled conventional system of BR vulcanizate accelerated with TBBS, addition to the olefinic double bond and substitution in the $\alpha$ position to the double bond occurred simultaneously. Also the latter $\alpha$ substitution reaction was faster than the former addition reaction at initial reaction time. In addition, it was suggested that double bond-addition-polysulfide structures might be modified into 5-membered and 6-membered cyclic structures in overcure time. These chain modifications were correlated with the decrease in the chemical crosslink density in overcure time.

Low Temperature Sintering of $Mg_{3-x}Co_x(VO_4)_2$ Microwave Dielectric Ceramics for LTCC Applications (저온소결 $Mgx_{-3}Cox(VO_4)_2$ 세라믹스의 마이크로파 유전특성)

  • Lee, Ji-Hun;Bang, Jae-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.220-223
    • /
    • 2005
  • We studied the effect of composition, processing, and sintering temperature on the microwave properties of $Mg_{3-x}Co_x(VO_4)_2$ system which is applicable to LTCC. When $Mg_{3-x}Co_x(VO_4)_2$ was fabricated by solid-state reaction process and sintered at the temperature range of $800\sim910^{\circ}C$, it was found that the optimum composition of x was 2 at which microwave properties of 910$^{\circ}C$-sintered one were as follows: $Q\times f_0\sim55,200GHz$ and $\varepsilon_r\sim10$. When $(MgCo_2)(VO_4)_2$ was fabricated by sol-gel process and sintered at 800$^{\circ}C$, $Q\timesf_0$was 34,400GHz which is much high compared to those fabricated by solid-state reaction process at the same sintering temperature.

  • PDF

Synthesis of Sr3Al2O6 Phosphors by Solid State Reaction and Its Luminescent Properties (고상법에 의한 Sr3Al2O6 형광체의 분말합성 및 발광특성)

  • Kim, Sue-Jin;Won, Hyung-Il;Won, Chang-Whan;Nersisyan, Hayk
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.3
    • /
    • pp.241-245
    • /
    • 2011
  • A red strontium aluminate phosphor ($Sr_3Al_2O_6:Eu^{3+},Eu^{2+}$) is synthesized using a solid state reaction method in air and reducing atmosphere. The investigation of firing temperature indicates that a single phase of $Sr_3Al_2O_6$ is formed when the firing temperature is higher than $1300^{\circ}C$. The effect of firing temperature and doping concentration on luminescent properties are investigated. $Sr_3Al_2O_6$ phosphor exhibits the typical red luminescent properties of $Eu^{3+}$ and $Eu^{2+}$.