DOI QR코드

DOI QR Code

Synthesis of Sr3Al2O6 Phosphors by Solid State Reaction and Its Luminescent Properties

고상법에 의한 Sr3Al2O6 형광체의 분말합성 및 발광특성

  • Kim, Sue-Jin (Department of Materials Science and Engineering, Chungnam National University) ;
  • Won, Hyung-Il (Rapidly Solidified Materials Research Center(RASOM)) ;
  • Won, Chang-Whan (Department of Materials Science and Engineering, Chungnam National University) ;
  • Nersisyan, Hayk (Rapidly Solidified Materials Research Center(RASOM))
  • 김수진 (충남대학교 신소재공학과) ;
  • 원형일 (급속응고신소재연구소) ;
  • 원창환 (충남대학교 신소재공학과) ;
  • Received : 2011.02.11
  • Accepted : 2011.05.11
  • Published : 2011.05.31

Abstract

A red strontium aluminate phosphor ($Sr_3Al_2O_6:Eu^{3+},Eu^{2+}$) is synthesized using a solid state reaction method in air and reducing atmosphere. The investigation of firing temperature indicates that a single phase of $Sr_3Al_2O_6$ is formed when the firing temperature is higher than $1300^{\circ}C$. The effect of firing temperature and doping concentration on luminescent properties are investigated. $Sr_3Al_2O_6$ phosphor exhibits the typical red luminescent properties of $Eu^{3+}$ and $Eu^{2+}$.

Keywords

References

  1. T. Mukai, M. Yamada, and S. Nakamura, “Current and Temperature Dependence of Electroluminescence of InGaNbased UV/Blue/Green Light-emitting Diodes,” Jpn. J. Appl. Phys., 37 [11B] L1358-61 (1995).
  2. S. Nakamura, M. Senob, N. lwasa, and S. Nagahama, “High-power InGaN Single-quantum-well-structure Blue and Violet Light-Emitting Diodes,” Appl. Phys. Lett., 67 [13] 1868-70 (1995). https://doi.org/10.1063/1.114359
  3. S. Nakamura, “The Role of Structural Imperfections in InGaN-based Blue Light-emitting Diodes and Laser Diodes,” Science, 281 956-61 (1998). https://doi.org/10.1126/science.281.5379.956
  4. P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence Conversion of Blue Light Emitting Diodes,” Appl. Phys., A. 64 [4] 417-18 (1997). https://doi.org/10.1007/s003390050498
  5. Y.D. Huh, Y.S. Cho, and Y. R. Do, “The Optical Properties of $(Y_{1-x}Gd_x)_{3-z}(Al_{1-y}Ga_y)_5O_{12}:Ce_z$ Phosphors for White LED,” Bull. Kor. Chem. Soc., 23 [10] 1435-38 (2002). https://doi.org/10.5012/bkcs.2002.23.10.1435
  6. Y. Hu, W. Zhuang, H. Ye, S. Zhang, Y. Fanga, and X. Huanga, “Preparation and Luminescent Properties of $(Ca_{1-x},Sr_x)S:Eu^{2+}$ Red-emitting Phosphor for White LED,” J. Lumin., 111 [3] 139-45 (2005). https://doi.org/10.1016/j.jlumin.2004.07.005
  7. C. Guo, D. Hunag, and Q. Sum, “Methods to Improve the Fluorescence Intensity of CaS:$Eu^{2+}$ Red-emitting Phosphor for White LED,” Mater. Sci. & Eng. B., 130 [1-3] 189-93 (2006). https://doi.org/10.1016/j.mseb.2006.03.008
  8. K. S’\'wiatk K. Karpin’ska, M. Godlewski, L. Niinisto, and M. Leskela, “Influence of Eu Concentration on Recombination Processes in CaS: $Eu^{2+}$ Thin Films,” J. Lumin., 60-61 923-25 (1994). https://doi.org/10.1016/0022-2313(94)90313-1
  9. N. Yamashita, O. Harada, and K, Nakamura, “Photoluminescence Spectra of $Eu^{2+}$ Centers in Ca(S,Se):Eu and Sr(S,Se):Eu,” Jpn. J. Appl. Phys., 34 5539-45 (1995). https://doi.org/10.1143/JJAP.34.5539
  10. D. Ravichandran, S.T. Johnson, S. Erdei, R. Roy, and W. B. White, “Crystal Chemistry and Luminescence of the $Eu^{2+}$ Activated Alkaline Earth Aluminate Phosphor,” Display., 19 [7] 197-203 (1999). https://doi.org/10.1016/S0141-9382(98)00050-X
  11. G. Blasse and B. C. Grabmaier, “Luminescent Materials,” pp. 33-70, Springer-Verlag, Berlin, 1994.
  12. T. Katsumata, K. Sasajima, T. Nabae, S. Kumuro, and T. Morikawa, “Characteristics of Strontium Aluminate Crystals Used for Long-duration Phosphors,” J. Am. Ceram. Soc., 81 [2] 413-16 (1996).
  13. Y. Pan, H. sung, H. Wu, J. Wang, X. Yang, M. Wu, and Q. Su, “Variable Geometry Effects on the Scramjet Ignition and Combustion,” Mater. Res. Bull., 27 [3] 225-29 (2006).
  14. Y. Liu and C. N. Xu, “Influence of Calcining Temperature on Photoluminescence and Triboluminescence of Europiumdoped Strontium Aluminate Particles Prepared by Sol-Gel Process,” J. Phys. Chem., B 107 [17] 3991-95 (2003).
  15. M. Akiyama, C. N. Xu, K. Nonaka, and T. Watanabe, “Intense Visible Light Emission from $Sr_3Al_2O_6$: Eu,Dy,” Apply. Phys. Lett., 73 [21] 3046-48 (1998). https://doi.org/10.1063/1.122667
  16. P. Zhang, L. X. Li, M. X. Xu, and L. Liu, “The New Red Luminescent $Sr_3Al_2O_6:Eu^{2+}$ Phosphor Powders Synthesized via Sol- Gel Route by Microwave-assisted,” J. Alloy Compd., 456 [1-2] 216-19 (2008). https://doi.org/10.1016/j.jallcom.2007.02.004
  17. P. Zhang, M. X. Xu, Z. T. Zheng, B. Sun, and Y. H. Zhang, “Rapid Formation of Red Long Afterglow Phosphor $Sr_3Al_2O_6:Eu^{2+},\;Dy^{3+}$ by Microwave Irradiation,” Mater. Sci. Eng. B., 136 [2-3] 159-64 (2007). https://doi.org/10.1016/j.mseb.2006.09.018
  18. G. Liu, J. H. Liang, Z. H. Deng, and Y. D. Li, “Synthesis and Photoluminescence Research of Novel Red-fluorescent $Sr_3Al_2O_6$ Powders,” Chin. J. Inorg. Chem., 18 [11] 1135-37 (2002).
  19. X. Ye, W. Zhuang, J. Wang, W. Yuan, and Z. Qiao, “Thermodynamic Description of $SrO-Al_2O_3$ System and Comparison with Similar Systems,” J. Phase Equilib Diff., 28 [4] 362-68 (2007). https://doi.org/10.1007/s11669-007-9086-x
  20. R. Y. Wang, “Distribution of $Eu^{3+}$ Ion in $LaPO_4$Nanocrystals,” J. Lumin., 106 [3-4] 211-17 (2004). https://doi.org/10.1016/j.jlumin.2003.10.001
  21. S. Shionoya and W. Yen, “Phosphor Handbook,” pp. 190,CRC Press, New York, 1999.
  22. R. Jagannathan, T.R.N. Kutty, M. Kottaisamy, and P. Jeyagopal, “Defects Induced Enhancement of $Eu^{3+}$ Emission in Yttria($Y_2O_3:Eu^{3+}$),” Jpn. J. Appl. Phys., 33 [11] 6207-12 (1994). https://doi.org/10.1143/JJAP.33.6207
  23. D. R. Vij, “Luminescence of Solids,” p. 122, Pleum Press, New York, 1998.
  24. S.H. Poort, W.P. Blokpoel, and G. Blasse, “Luminescence of $Eu^{2+}$ in Barium and Strontium Aluminate and Gallate,” Chem. Mater., 7 [8] 1547-51 (1995). https://doi.org/10.1021/cm00056a022

Cited by

  1. Ions vol.51, pp.1, 2014, https://doi.org/10.4191/kcers.2014.51.1.037