Browse > Article
http://dx.doi.org/10.5012/bkcs.2007.28.9.1467

Single-Step Solid-State Synthesis of CeMgAl11O19:Tb Phosphor  

Park, Byoung-Kyu (College of Environment and Applied Chemistry, Institute of Natural Sciences, Kyung Hee University)
Lee, Seoung-Soo (College of Environment and Applied Chemistry, Institute of Natural Sciences, Kyung Hee University)
Kang, Jun-Kun (College of Environment and Applied Chemistry, Institute of Natural Sciences, Kyung Hee University)
Byeon, Song-Ho (College of Environment and Applied Chemistry, Institute of Natural Sciences, Kyung Hee University)
Publication Information
Abstract
The green-emitting CeMgAl11O19:Tb (CMAT) phosphor has been prepared at 1200 °C by the simple solid-state reaction using AlF3 as a self-flux. This preparation temperature is much lower than those (1500-1700 °C) for conventional solid-state reaction and spray pyrolysis method. In particular, the complete process to produce high-quality phosphor particles was carried out through the single-step heat treatment of the mixture of corresponding oxide-type metal sources. An addition of AlF3 as a self-flux significantly decreased the crystallization temperature of CMAT with plate-like shape. The particle morphology could be controlled from plate-like to spherical by using H3BO3 as an additional flux. Thus, an optimal morphology and luminescence characteristics of CMAT were achieved when both AlF3 and H3BO3 fluxes were simultaneously used. Compared with conventional solid-state process, which is accompanied by the calcination step(s), and other alternative liquid solution techniques such as sol-gel method and spray pyrolysis, no use of active precursors and liquid media that are harmful to the environment is a distinctive advantage for the industrial purpose.
Keywords
CMAT; Phosphor; Aluminate; Single-step; Self-flux;
Citations & Related Records

Times Cited By Web Of Science : 4  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 Ronda, C. R. J. Lumin. 1997, 72-74, 49
2 Smets, B. M. J. Mater. Chem. Phys. 1987, 16, 283   DOI   ScienceOn
3 Zhang, J.; Zhang, Z.; Tang, Z.; Lin, Y. Mater. Chem. Phys. 2001, 72, 81   DOI   ScienceOn
4 Stevels, A. L. N.; Schrama de Pauw, A. D. M. J. Electrochem. Soc. 1976, 123, 691   DOI   ScienceOn
5 Verstegen, J. M. P. J.; Sommerdijk, J. L.; Verriet, J. G. J. Lumin. 1973, 6, 425   DOI   ScienceOn
6 Verstegen, J. M. P. J.; Radielovic, D.; Vrenken, L. E. J. Electrochem. Soc. 1974, 121, 1627   DOI   ScienceOn
7 Laville, F.; Lejus, A. M. J. Cryst. Growth 1983, 63, 426   DOI   ScienceOn
8 Jia, P. Y.; Yu, M.; Lin, J. J. Solid State Chem. 2005, 178, 2734   DOI   ScienceOn
9 Jung, D. S.; Hong, S. K.; Ju, S. H.; Lee, H. J.; Kang, Y. C. Jpn. J. Appl. Phys. 2005, 44, 4975   DOI
10 Kang, Y. C.; Lenggoro, I. W.; Park, S. B.; Okuyama, K. Appl. Phys. A 2001, 72, 103   DOI   ScienceOn
11 Jung, D. S.; Hong, S. K.; Ju, S. H.; Koo, H. Y.; Kang, Y. C. Jpn. J. Appl. Phys. 2006, 45, 116   DOI
12 Kang, Y. C.; Lenggoro, I. W.; Okuyama, K.; Park, S. B. J. Electrochem. Soc. 1999, 146, 1227   DOI   ScienceOn
13 Golego, N.; Studenikin, S. A.; Cocivera, M. J. Electrochem. Soc. 2000, 147, 1993   DOI   ScienceOn
14 Jung, D. S.; Hong, S. K.; Lee, H. J.; Kang, Y. C. J. Alloys Compd. 2005, 398, 309   DOI   ScienceOn
15 Lee, S.-S.; Kim, H. J.; Byeon, S.-H.; Park, J.-C.; Kim, D.-K. Ind. Eng. Chem. Res. 2005, 44, 4300   DOI   ScienceOn
16 Sommerdijk, J. L.; Verstegen, J. M. P. J. J. Lumin. 1974, 9, 415   DOI   ScienceOn
17 Kahn, A.; Lejus, A. M.; Madsac, M.; Thery, J.; Vivien, D.; Bernier, J. C. J. Appl. Phys. 1981, 52, 6864   DOI   ScienceOn