• 제목/요약/키워드: Solid-solid phase transition

검색결과 206건 처리시간 0.044초

Structural, FTIR and ac conductivity studies of NaMeO3 (Me ≡ Nb, Ta) ceramics

  • Roy, Sumit K.;Singh, S.N.;Kumar, K.;Prasad, K.
    • Advances in materials Research
    • /
    • 제2권3호
    • /
    • pp.173-180
    • /
    • 2013
  • Lead-free complex perovskite ceramics $NaMeO_3$ ($Me{\equiv}Nb$, Ta) were synthesized using conventional solid state reaction technique and characterized by structural, FTIR and electrical (dielectric and ac conductivity) studies. The crystal symmetry, space group and unit cell dimensions were determined from the experimental results using FullProf software. XRD analysis of the compound indicated the formation of single-phase orthorhombic structure with the space group Pmmm (47). Dielectric studies showed the diffuse phase transition at $394^{\circ}C$ for $NaNbO_3$ and $430^{\circ}C$ for $NaTaO_3$. Ac conductivity in both the compounds follows Jonscher's power law.

전해질 첨가에 따른 키토산/Sodium Dodecyl Sulfate 상호작용의 변화 (The Change of Interactions of Chitosan/Sodium Dodecyl Sulfate in the Presence of Electrolytes)

  • 배현숙;강인숙
    • 한국의류학회지
    • /
    • 제27권5호
    • /
    • pp.523-523
    • /
    • 2003
  • The change of interactions of anionic surfactants, sodium dodecyl sulfate(SDS) and sodium tetradecyl sulfate(575) in the presence of electrolytes, to the chitosan-based polyelectrolyte(sol'n and gel phase) were studied. The chitosan gel used in this study were crosslinked with epichlorohydrin(ECH). Binding isotherms were determined by potentiometric technique using a surfactant ion selective solid-state electrode and the results were represented by using the sequence generating function(SGF) method. The results of binding isotherm were shown comparatively high cooperativity. The addition of electrolytes in the chitosan/SDS system resulted in a shift of the binding to higher free surfactant concentration because of screen effect by the electrolytes. Degree of binding of chitosan gel was higher than that of chitosan sol'n. And also a conformational phase transition of the chitosan gel in the presence of electrolytes has been investigated.

전해질 첨가에 따른 키토산/Sodium Dodecyl Sulfate 상호작용의 변화 (The Change of Interactions of Chitosan/Sodium Dodecyl Sulfate in the Presence of Electrolytes)

  • 배현숙;강인숙
    • 한국의류학회지
    • /
    • 제27권5호
    • /
    • pp.524-532
    • /
    • 2003
  • The change of interactions of anionic surfactants, sodium dodecyl sulfate(SDS) and sodium tetradecyl sulfate(575) in the presence of electrolytes, to the chitosan-based polyelectrolyte(sol'n and gel phase) were studied. The chitosan gel used in this study were crosslinked with epichlorohydrin(ECH). Binding isotherms were determined by potentiometric technique using a surfactant ion selective solid-state electrode and the results were represented by using the sequence generating function(SGF) method. The results of binding isotherm were shown comparatively high cooperativity. The addition of electrolytes in the chitosan/SDS system resulted in a shift of the binding to higher free surfactant concentration because of screen effect by the electrolytes. Degree of binding of chitosan gel was higher than that of chitosan sol'n. And also a conformational phase transition of the chitosan gel in the presence of electrolytes has been investigated.

Crystallization of Forsterite Xerogel under Carbon Dioxide: A New Crystalline Material Synthesized by Homogeneous Distribution of Carbonaceous Component into Forsterite Xerogel

  • 송미영;김수주;권혜영;박선희;박동곤;권호진;권영욱;James M. Burlitch
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권5호
    • /
    • pp.517-524
    • /
    • 1999
  • By heating the magnesiumsilicate (Mg2SiO4:forsterite) xerogel in carbon dioxide, carbonaceous component was intentionally introduced into the amorphous solid precursor. Carbon was introduced homogeneously as unidentate carbonate. Upon being heated at 800 。C in carbon dioxide, the xerogel which had homogeneously distributed carbonaceous component in it crystallized into a single phase product of a new crystalline material, which had approximate composition of Mg8Si4Ol8C. The powder X-ray diffraction pattern of the new crystalline material did not match with any known crystalline compound registered in the powder diffraction file. Crystallization from amorphous xeroget to the new crystalline phase occurred in a very narrow range of temperature, from 750 。C to 850 。C in carbon dioxide, or in dty oxygen. Upon being heated above 850 。C, carbonaceous component was expelled from the product, accompanied by irreversible transition from the new crystalline material to forsterite.

${Bi_{1.84}}{Pb_{0.34}}{Sr_{1.91}}{Ca_{2.03}}{Cu_{3.06}}{O_{10+\delta}}$(110K 상) 산화물 고온초전도체에 미치는 Ag 혼합효과 (Effect of the Ag Additive on the ${Bi_{1.84}}{Pb_{0.34}}{Sr_{1.91}}{Ca_{2.03}}{Cu_{3.06}}{O_{10+\delta}}$(110K Phase) High-$T_{c}$ Susperconductor)

  • 이민수;최봉수;최봉수
    • 한국세라믹학회지
    • /
    • 제38권12호
    • /
    • pp.1104-1109
    • /
    • 2001
  • 110K상의 산화물 고온초전도체를 B $i_{1.84}$P $b_{0.34}$S $r_{1.91}$C $a_{2.03}$C $u_{3.06}$ $O_{10+}$$\delta$/의 출발조성비로 고상반응법(solid-state reaction)에 의해 합성하였다. 이렇게 합성된 Bi계 110K상의 산화물 고온초전도 물질을 다시 분말 상태로 만든 후, Ag 금속분말을 10wt%, 30wt%, 50wt%의 각 비율로 혼합하였다. Ag 금속분말이 혼합된 시편들을 86$0^{\circ}C$~875$^{\circ}C$로 24시간 동안 최종 소결시켰다. 그후, 각 시편들에 대하여 x-선, $T_{c}$, SEM 등을 측정하여 Ag 혼합량에 대한 초전도특성 및 표면의 grain 크기변화 등에 대한 조사를 진행하였다. Ag 혼합량이 증가됨에 따라 Ag peak의 강도는 증가되었고, 시편 내 2223 상의 비율은 감소하고 2212상의 비율은 증가되었다.비율은 증가되었다.

  • PDF

레시틴 오가노겔을 이용한 난용성 제니스테인의 용해도 향상 (Development of Lecithin Organogel to Improve Solubility of Genistein)

  • 이수진;김정아;강내규;박선규;이천구
    • 대한화장품학회지
    • /
    • 제41권3호
    • /
    • pp.201-208
    • /
    • 2015
  • 오가노겔은 반고형상이며 3차원의 네트워크 구조로 이루어진 친유성 용매로 이루어져 있다. 본 연구에서는 유상과 수상에서 모두 난용성 특징을 가진 제니스테인을 포함하는 레시틴 오가노겔을 개발하였다. 이 시스템은 안정할 뿐만 아니라 경피 흡수 실험에서도 높은 흡수율을 보였다. 본 오가노겔 제형에 적합한 원료들을 선별한 결과, 수화된 레시틴, 해바라기유, dipropylene glycol (DPG), polyethylene glycol (PEG)이 이 시스템에서 주로 사용되었다. 레시틴 오가노겔의 제조에 적합한 원료의 함량은 phase ternary diagram 작성을 통하여 결정하였다. 제조된 레시틴 오가노겔을 organoleptic characteristics, stability, pH, rheology, phase transition temperatures, microscopic analysis, skin penetration 실험을 통해 평가하였다. 본 연구 결과를 통해 본 논문에서 제시하는 레시틴 오가노겔 제형은 안정한 상태에서 난용성 물질을 높은 농도로 피부에 효과적으로 전달할 수 있는 제형으로 활용될 수 있을 것이라 생각된다.

Phase transition of (Bi, Pb)-2223 superconductor induced by Fe3O4 addition

  • Ko, Y.J.;Oh, J.Y.;Song, C.Y.;Yang, D.S.;Tran, D.H.;Kang, B.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제21권4호
    • /
    • pp.1-5
    • /
    • 2019
  • We investigated the effect of Fe3O4 addition on the critical temperature of (Bi, Pb)-2223 polycrystalline samples. Bi1.6Pb0.4Sr2Ca2Cu3O10+δ + x wt. % Fe3O4 (x = 0.0, 0.2, 0.4, 0.6, and 0.8) samples were prepared by using a solid-state reaction method. The analysis of X-ray diffraction data indicates that as Fe3O4 is added, dominant phase of the sample changes from Bi-2223 to Bi-2212 with an increasing Bi-2201 phase. The transition temperature of the samples drastically decreased with the Fe3O4 addition. The resistance data of samples with x = 0.2 and 0.4 showed a double transition indicating a coexistence of Bi-2223 and Bi-2212 phase while the samples with x = 0.6 and 0.8 showed a single transition with a semiconducting behavior. This phase transition may originate from changes in local structure of the Bi-2223 system by Fe3O4 addition. Analysis of the pair distribution function of the Cu-O pair in the CuO2 plane calculated from extended X-ray absorption fine structure data revealed that the oxygen coordination of copper ion changes from CuO4 planar type (x = 0.0 - 0.4) to CuO5 pyramidal type (x = 0.6, 0.8). The correlated Debye-Waller factor, providing information on the atomic disorder within the CuO2 plane, shows an inverse relation to the coordination number. These results indicate that addition of Fe3O4 changes the oxygen distribution around Cu in the CuO2 plane, causing a phase transition from Bi-2223 to more stable Bi-2212/Bi-2201 phases.

$BaTiO_3$에서 $Cd_5(PO_4)_3Cl$의 첨가로 인한 Curie 온도변화 (Variation of the Curie Temperature in $BaTiO_3$ Doping $Cd_5(PO_4)_3Cl$)

  • 김광철
    • 반도체디스플레이기술학회지
    • /
    • 제10권1호
    • /
    • pp.95-99
    • /
    • 2011
  • $(1-x)BaTiO_3+(x)Cd_5(PO_4)_3Cl$ ceramics were prepared by the conventional ceramic technique, i.e., solid state reaction at high temperature. The concentration of $Cd_5(PO_4)_3C$ was varied from 0.01 to 0.15 mole fraction. In order to study the phase transitions of our ceramics, the Raman scattering spectra were measured as functions of concentration x and temperature. It was found that the soluble limit of $Cd_5(PO_4)_3Cl$ in $BaTiO_3$ was the x=0.05 composition and $BaTiO_3$ phase disappeared above x=0.10. A new phase identified as $Ba_4Ti_3P_2O_{15}$ was detected in all samples of our compositions. The Curie temperature shifts up to $130^{\circ}C$ as the concentration x increases from zero to 0.05 and shift down to $95^{\circ}C$ as further increases to 0.08. For the increase of the Curie temperature, it is suggested that it can result from the inhibition of displacement of $Ti^{4+}$ in the distorted octahedron due to well dispersed $Ba_4Ti_3P_2O_{15}$ and $Cd_5(PO_4)_3Cl$ phase.

The Study on the Phase Transition and Piezoelectric Properties of Bi0.5(Na0.78K0.22)0.5TiO3-LaMnO3 Lead-free Piezoelectric Ceramics

  • Lee, Ku Tak;Park, Jung Soo;Cho, Jeong Ho;Jeong, Young Hun;Paik, Jong Hoo;Yun, Ji Sun
    • 한국세라믹학회지
    • /
    • 제52권4호
    • /
    • pp.237-242
    • /
    • 2015
  • $Bi_{0.5}(Na_{0.78}K_{0.22})_{0.5}TiO_3$ (BNKT) lead-free piezoelectric ceramics modified by $LaMnO_3$ (LM) were fabricated by conventional solid-state method. The crystal structure and the morphology of the lead free ceramics were analyzed by XRD (X-ray diffraction) and FE-SEM (Field Emission Scanning Electron Microscopy). The LM modified BNKT ceramics have a phase transition from ferroelectric tetragonal to non-polar pseudo-cubic. Despite decreases in the remnant polarization ($P_r$) and coercive field ($E_c$) in the P-E hysteresis loops, the electric-field induced strain properties were significantly enhanced by the LM modification. The highest value of $S_{max}/E_{max}=412pm/V$ at an applied electric field of 5 kV/mm was found in BNKT-0.01LM ceramic.