DOI QR코드

DOI QR Code

Structural, FTIR and ac conductivity studies of NaMeO3 (Me ≡ Nb, Ta) ceramics

  • Roy, Sumit K. (Department of Physics, St. Xavier's College) ;
  • Singh, S.N. (University Department of Physics, Ranchi University) ;
  • Kumar, K. (Refractory Division, RDCIS, SAIL) ;
  • Prasad, K. (University Department of Physics, T. M. Bhagalpur University)
  • Received : 2013.05.19
  • Accepted : 2013.08.06
  • Published : 2013.09.25

Abstract

Lead-free complex perovskite ceramics $NaMeO_3$ ($Me{\equiv}Nb$, Ta) were synthesized using conventional solid state reaction technique and characterized by structural, FTIR and electrical (dielectric and ac conductivity) studies. The crystal symmetry, space group and unit cell dimensions were determined from the experimental results using FullProf software. XRD analysis of the compound indicated the formation of single-phase orthorhombic structure with the space group Pmmm (47). Dielectric studies showed the diffuse phase transition at $394^{\circ}C$ for $NaNbO_3$ and $430^{\circ}C$ for $NaTaO_3$. Ac conductivity in both the compounds follows Jonscher's power law.

Keywords

References

  1. AmarNath, K. and Prasad, K. (2012), "Structural and electric properties of perovskite $Ba(Sm_{1/2}Nb_{1/2})O_{3}-BaTiO_{3}$ ceramic", Adv. Mater. Res., 1(2), 115-128. https://doi.org/10.12989/amr.2012.1.2.115
  2. Bhagat, S., AmarNath, K., Chandra, K.P., Singh, R.K., Kulkarni, A.R. and Prasad, K. (2013), "The structural, electrical and magnetic properties of perovskite $(1-x)Ba(Fe_{1/2}Nb_{1/2})O_{3}-xBaTiO_{3}$ ceramics", Adv. Mater. Lett., in press.
  3. Chen, X.M., Lu, Y.T., Jin, D.Z. and Liu, X.Q. (2005), "Dielectric and ferroelectric characterization of $Na(Ta,Nb)O_{3}$ solid solution ceramics", J. Electroceram., 15(1), 21-26. https://doi.org/10.1007/s10832-005-0373-9
  4. Damjanovic, D., Klein, N., Li, J. and Porokhonskyy, V. (2010), "What can be expected from lead-free piezoelectric materials?", Funct. Mater. Lett., 3(1), 5-13. https://doi.org/10.1142/S1793604710000919
  5. Du, H., Huang, Y., Tang, H., Qin, H. and Feng, W. (2013a), "Dielectric and piezoelectric properties of $SrZrO_{3}$-modified $(K_{0.45}Na_{0.51}Li_{0.04})(Nb_{0.90}Ta_{0.04}Sb_{0.06})O_{3}$ lead-free piezoceramics", Mater. Lett., 106, 141-144. https://doi.org/10.1016/j.matlet.2013.04.052
  6. Du, H., Huang, Y., Tang, H., Feng, W., Qin, H. and Lu, X. (2013b), "Structure and electrical properties of $[(K_{0.49}Na_{0.51})_{1-x}Li_{x}](Nb_{0.90}Ta_{0.04}Sb_{0/06})O_{3}$ lead-free piezoceramics", Ceram. Int., 39, 5689-5694. https://doi.org/10.1016/j.ceramint.2012.12.086
  7. Eichel, R.A. and Kungl, H. (2010), "Recent developments and future perspectives of lead-free ferroelectrics", Funct. Mater. Lett., 3(1), 1-4. https://doi.org/10.1142/S179360471000097X
  8. Hsiao, Y.J., Chang, Y.H., Chang, Y.S., Fang, T.H., Chai, Y.L., Chen, G.J. and Huang, T.W. (2007), "Growth and characterization of $NaNbO_{3}$ synthesized using reaction-sintering method", Mater. Sci. Engg. B, 136(2-3), 129-133. https://doi.org/10.1016/j.mseb.2006.09.013
  9. Jha, A.K. and Prasad, K. (2012), "Biological synthesis of cobalt ferrite nanoparticles", Nanotechnol. Dev., 2:e9, 46-51.
  10. Jonscher, A.K. (1983), Dielectric Relaxation in Solids, Chelsea, New York.
  11. Kennedy, B.J., Prodjosantoso, A.K. and Howard, C.J. (1999), "Powder neutron diffraction study of the high temperature phase transitions in $NaTaO_{3}$", J. Phys.: Condens. Matter, 11(33), 6319-6328. https://doi.org/10.1088/0953-8984/11/33/302
  12. Koruza, J., Tellier, J., Malic, B., Bobnar, V. and Kosec, M. (2010), "Phase transitions of sodium niobate powder and ceramics, prepared by solid state synthesis", J. Appl. Phys., 108(11), 113509-113518. https://doi.org/10.1063/1.3512980
  13. Kumar, S., Sahay, L.K., Jha, A.K. and Prasad, K. (2013), "Synthesis of $(Ag_{0.5}Fe_{0.5})TiO_{3}$ nanocrystalline powders using stearic acid gel method", Adv. Mater. Lett., 4(2), in press.
  14. Kumari, K., Prasad, A. and Prasad K. (2011), "Structural and dielectric properties of ZnO added $(Na_{1/2}Bi_{1/2})TiO_{3}$ ceramic", J. Mater. Sci. Technol., 27(3), 213-217. https://doi.org/10.1016/S1005-0302(11)60051-0
  15. Mathai, S.K., Vidya, S., Solomon, S. and Thomas, J.K. (2012), "A study of dielectric and optical properties of crystalline $Nb_{2}O_{5}$ nanoparticles synthesized by a modified combustion technique", Int. J. Appl. Math. Sci., 5(1), 19-34.
  16. Mizaras, R., Takashige, M., Banys, J., Kojima, S., Grigas, J., Hamazaki S.I. and Brilingas, A. (1997), "Dielectric relaxation in $Ba_{2}NaNb_{5(1-x)}Ta_{5x}O_{15}$ single crystals", J. Phys. Soc. Jpn., 66, 2881-2885. https://doi.org/10.1143/JPSJ.66.2881
  17. Panda, P.K. (2009), "Review: environmental friendly lead-free piezoelectric materials", J. Mater. Sci., 44(19), 5049-5062. https://doi.org/10.1007/s10853-009-3643-0
  18. Prasad, K., Choudhary, R.N.P., Choudhary, S.N. and Sati, R. (1996), "On the structural and electrical properties of modified $PbTiO_{3}$ ceramics", Bull. Mater. Sci., 19(3), 505-512. https://doi.org/10.1007/BF02744822
  19. Prasad, K., Suman, C.K. and Choudhary, R.N.P. (2006), "Electrical characterization of $Pb_{2}Bi_{3}SmTi_{5}O_{18}$ ceramic using impedance spectroscopy", Adv. Appl. Ceram., 105, 258-264. https://doi.org/10.1179/174367606X115940
  20. Reznitchenko, L.A., Turik, A.V., Kuznetsova, E.M. and Sakhnenko, V.P. (2001), "Piezoelectricity in $NaNbO_{3}$ ceramics", J. Phys.: Condens. Matter, 13(17), 3875-3882. https://doi.org/10.1088/0953-8984/13/17/308
  21. Rodel, J., Jo, W., Seifert, K.T.P., Anton, E.M., Granzow, T. and Damjanovic, D. (2009), "Perspective on the development of lead-free piezoceramics", J. Am. Ceram. Soc., 92(6), 1153-1177. https://doi.org/10.1111/j.1551-2916.2009.03061.x
  22. Rodriguez-Carvajal, J., "FullProf 2000: A Rietveld refinement and pattern matching analysis program", (Version: February 2012), Laboratoire Leon Brillouin (CEA-CNRS), France.
  23. Roisnel, J. and Rodriguez-Carvajal, J. (2000), WinPLOTR, Laboratoire Leon Brillouin (CEA-CNRS) Centred‟ Etudes de Saclay: Gif sur Yvette Cedex, France.
  24. Rojac, T., Segedin, P. and Kosec, M. (2012), Using infrared spectroscopy to identify new amorphous phases - A case study of carbonato complex formed by mechanochemical processing, book edited by Theophile Theophanides.
  25. Seo, I.T., Choi, C.H., Song, D., Jang, M.S., Kim, B.Y., Nahm, S., Kim, Y.S., Sung, T.H. and Song, H.C. (2013), "Piezoelectric properties of lead-free piezoelectric ceramics and their energy harvester characteristics", J. Am. Ceram. Soc., 96(4), 1024-1028. https://doi.org/10.1111/jace.12227
  26. Shrout, T.R. and Zhang, S.J. (2007), "Lead-free piezoelectric ceramics: Alternatives for PZT?", J. Electroceram., 19(1), 111-124.
  27. Sindhu, M., Ahlawat, N., Sanghi, S., Agarwal, A., Kumari, A.R. and Ahlawat, N.N. (2012), "Rietveld refinement and dc conductivity of $Na_{0.5}K_{0.5}NbO_{3}$ ceramics", Adv. Mater. Res., 585, 210-213. https://doi.org/10.4028/www.scientific.net/AMR.585.210
  28. Takenaka, T. and Nagata, H. (2005), "Current status and prospects of lead-free piezoelectric ceramics", J. Euro. Ceram. Soc., 25(12), 2693-2700. https://doi.org/10.1016/j.jeurceramsoc.2005.03.125
  29. Taub, J., Ramajo, L. and Castro, M.S. (2013), "Phase structure and piezoelectric properties of Ca- and Badoped $K_{1/2}Na_{1/2}NbO_{3}$ lead-free ceramics", Ceram. Int., 39, 3555-3561. https://doi.org/10.1016/j.ceramint.2012.10.181
  30. Vendrell, X., Garcia, J.E., Rubio-Marcos, F., Ochoa, D.A., Mestres, L. and Fernandez, J.F. (2013), "Exploring different sintering atmospheres to reduce nonlinear response of modified KNN piezoceramics", J. Euro. Ceram. Soc., 33, 825-831. https://doi.org/10.1016/j.jeurceramsoc.2012.09.025
  31. Wunderlich, W. (2009), "$NaTaO_{3}$ composite ceramics - A new thermoelectric material for energy generation", J. Nuclear Mater., 389, 57-61. https://doi.org/10.1016/j.jnucmat.2009.01.007
  32. Zhao, Y., Huang, R., Liu, R. and Zhou, H. (2012), "Phase structure of $Li_{0.058}(Na_{0.51}K_{0.49})_{0.942}NbO_{3}$ lead-free piezoelectric ceramics", Mater. Lett., 84, 52-55. https://doi.org/10.1016/j.matlet.2012.06.030

Cited by

  1. The electrical performance of ceramics materials with perovskite structure doped with metallic ions vol.42, pp.16, 2016, https://doi.org/10.1016/j.ceramint.2016.09.048
  2. The Electrical Properties of Some Composite Materials Based on Sodium and Tantalum Oxides vol.129, pp.1, 2016, https://doi.org/10.12693/APhysPolA.129.133
  3. Dielectric and Raman studies of Ba0.06(Na1/2Bi1/2)0.94TiO3–NaNbO3 ceramics vol.34, pp.2, 2016, https://doi.org/10.1515/msp-2016-0041
  4. Structural and Optical Properties of Perovskite–Type Compounds Obtained by Ultrasonic Method vol.416, pp.1757-899X, 2018, https://doi.org/10.1088/1757-899X/416/1/012067
  5. Electrochemical Behavior of S and C Mono-Doped Sodium Tantalate Photocatalysts vol.50, pp.12, 2013, https://doi.org/10.1007/s11664-021-09206-x