• Title/Summary/Keyword: Solid-solid phase transition

Search Result 207, Processing Time 0.03 seconds

Phase Transitional Behavior and Piezoelectric Properties of 0.94(Na0.5K0.5NbO3-0.06Ba(Ti0.9Sn0.1)O3 Lead-free Ceramics (무연계 0.94(Na0.5K0.5NbO3-0.06Ba(Ti0.9Sn0.1)O3 세라믹의 상전이 거동과 압전 특성)

  • Cha, Yu-Joung;Nahm, Sahn;Jeong, Young-Hun;Lee, Young-Jin;Paik, Jong-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.9
    • /
    • pp.766-771
    • /
    • 2009
  • Lead-free $0.94(Na_{0.5}K_{0.5})NbO_3$-0.06Ba$(Ti_{0.9}Sn_{0.1})O_3$ [0.94NKN-0.06BTS] ceramics doped with 1 mol% $MnO_2$ were synthesized by a conventional solid state method. The phase transitional behavior and piezoelectric properties of the ceramics sintered at various temperatures were investigated. The 0.94NKN-0.06BTS ceramics sintered at $1050^{\circ}C$, having morphotropic phase boundary of orthorhombic and tetragonal phases, exhibited a microstructure with abnormal grain growth. A diffused phase transition behavior for all the specimens was verified as high degree of diffuseness (${\gamma}$) values from 1.45 to 1.79. A high piezoelectric constant of $d_{33}=256$ pC/N and a satisfactory electromechanical coupling factor of $k_p=42%$ were obtained for the relatively dense 0.94NKN-0.06BTS ceramics sintered at $1050^{\circ}C$.

Synthesis and Optical Property of (GaN)1-x(ZnO)x Nanoparticles Using an Ultrasonic Spray Pyrolysis Process and Subsequent Chemical Transformation (초음파 분무 열분해와 화학적 변환 공정을 이용한 (GaN)1-x(ZnO)x 나노입자의 합성과 광학적 성질)

  • Kim, Jeong Hyun;Ryu, Cheol-Hui;Ji, Myungjun;Choi, Yomin;Lee, Young-In
    • Journal of Powder Materials
    • /
    • v.28 no.2
    • /
    • pp.143-149
    • /
    • 2021
  • In this study, (GaN)1-x(ZnO)x solid solution nanoparticles with a high zinc content are prepared by ultrasonic spray pyrolysis and subsequent nitridation. The structure and morphology of the samples are investigated by X-ray diffraction (XRD), field-emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The characterization results show a phase transition from the Zn and Ga-based oxides (ZnO or ZnGa2O4) to a (GaN)1-x(ZnO)x solid solution under an NH3 atmosphere. The effect of the precursor solution concentration and nitridation temperature on the final products are systematically investigated to obtain (GaN)1-x(ZnO)x nanoparticles with a high Zn concentration. It is confirmed that the powder synthesized from the solution in which the ratio of Zn and Ga was set to 0.8:0.2, as the initial precursor composition was composed of about 0.8-mole fraction of Zn, similar to the initially set one, through nitriding treatment at 700℃. Besides, the synthesized nanoparticles exhibited the typical XRD pattern of (GaN)1-x(ZnO)x, and a strong absorption of visible light with a bandgap energy of approximately 2.78 eV, confirming their potential use as a hydrogen production photocatalyst.

Synthesis and Characterization of Aliphatic Hyperbranched Polyesters (지방족 고차가지구조 폴리에스테르의 합성 및 물성)

  • Kim Jang-Yup;Ok Chang-Yul;Lee Sang-Won;Huh Wansoo
    • Polymer(Korea)
    • /
    • v.29 no.6
    • /
    • pp.575-580
    • /
    • 2005
  • The hydroxy terminated aliphatic hyperbranched polyesters having different generations were synthesized by using melt polycondensation procedure. Then, the terminal groups of hyperbranched polyesters were modified by using acryloyl chloride and characterized by $\^{1}H$-NMR and GPC techniques. As a result of the modification of terminal groups for hyperbranched polyesters, the phase of the polymers were changed from sticky solid to high viscous liquid indicating that the glass transition temperatures of modified hyperbranched polyesters were lower than the original one. The thermal stabilities of hydroxy terminated hyperbranched polyesters were higher than those of terminal group-modified polymers.

Electrical Characteristics of Cathode Li($Mn_{1-\delta}$$M_{\delta}$)$_2$$O_4$ Substituted by Transition Metals in Li-Ion Secondary Batteries (전이금속 치환 리튬이온 이차전지 정극 Li($Mn_{1-\delta}$$M_{\delta}$)$_2$$O_4$의 전기적 특성)

  • 박재홍;김정식;유광수
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.5
    • /
    • pp.466-472
    • /
    • 2000
  • As cathode materials of LiMn2O4-based lithium-ion secondary batteries, Li(Mn1-$\delta$M$\delta$)2O4 (M=Ni and Co, $\delta$=0, 0.05, 0.1 and 0.2) materials which Co and Ni are substituted for Mn, were syntehsized by the solid state reaction at 80$0^{\circ}C$ for 48 hours. No second phases were formed in Li(Mn1-$\delta$M$\delta$)2O4 system with substitution of Co. However, substitution of Ni caued to form a second phase of NiO when its composition exceeded over 0.2 of $\delta$ in Li(Mn1-$\delta$M$\delta$)2O4. As the results of charging-discharging test, the maximum capacity of Li(Mn1-$\delta$M$\delta$)2O4 appeared in $\delta$=0.1 for both Co and Ni. Also, Li(Mn1-$\delta$M$\delta$)2O4 electrode showed higher capacity and better cycle performance than LiMn2O4.

  • PDF

The Determination of Curie Point of Bulk Gadolinium (Bulk Gadolinium의 Curie점 결정)

  • Lee, Il-Su;Lee, Ui-Wan;Lee, Sang-Yun
    • Korean Journal of Materials Research
    • /
    • v.3 no.4
    • /
    • pp.422-423
    • /
    • 1993
  • In this short note, we report the result of measurement for the ferro- to paramagnetic phase transition temperature, that is Curie point of bulk gadolinium. This note is written to give the solid validity for the previous measurement of Curie point shift of gadolinium film (1. Rhee, E. Lee and S. Lee, Kor. J. of Mat. Research,3, 3, 1993). The Curie point of bulk gadolinium is determined by measuring the resistance of sample as function of temperatures. At Curie point, we can observe the resistivity anomaly which arises due to the heat capacity difference between below and above Curie point. Finally, the curie point of bulk gadolinium is found to be 19.2${\pm}$0.$3^{\circ}C$.

  • PDF

The Effects of SiO2 Addition and Cooling Rate Change by Sol-gel Processing in Semiconducting BaTiO3 Ceramics (반도성 $BaTiO_3$ 세라믹스의 Sol-gel법에 의한 $SiO_2$ 첨가 및 냉각속도 효과)

  • 권오성;정용선;윤영호;이병하
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.12
    • /
    • pp.1301-1310
    • /
    • 1996
  • Generally it requires high sintering temperatures more than 135$0^{\circ}C$ to make semiconductive BaTiO3 ceramics. Also it is very difficult to achieve a homogeneous mixing in solid-state reaction method. Therefore the liquid phase distributed to non-uniform dilute the characteristics of PTCR. In order to improve the uniformity this study is used the sol-gel coating method. Using this method we studied the new manufacturing process that had a high reproducibility and mass production capability. Tetraethyl orthosilicate (TEOS) was used as a source of Si. The semiconductive BaTiO3 ceramics which was produced by sol-gel method for the SiO2 addition and sintered between 124$0^{\circ}C$ and 130$0^{\circ}C$ showed almost same resistivity at room temperature among 125$0^{\circ}C$ and 130$0^{\circ}C$. As the results We could be sintered the semiconducting BaTiO3 ceramics at lower temperature even at 125$0^{\circ}C$ maintaining the same specific resistivity ratio ($\rho$max/$\rho$min) at 130$0^{\circ}C$. The specific resistivity both below and above the Curie temperature were increased by slow cooling and the steepness of the plots in the reasion of transition from low to high resistance increased as the cooling rate decreased.

  • PDF

Effect of $MnO_2$ Addition on the Electric Properties in Pb($Mg_{1/3}Nb_{2/3}$)$O_3$ Relaxor Ferroelectrics ($MnO_2$ 첨가에 따른 Pb($Mg_{1/3}Nb_{2/3}$)$O_3$계 완화형 강유전체에서의 전기적 물성변화)

  • 박재환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.7
    • /
    • pp.562-566
    • /
    • 2001
  • The effects of MnO$_2$ addition on the properties in Pb(Mg$_{1}$3/Nb$_{2}$3/)O$_3$ relaxor ferroelectrics were studied in the phase transition temperature range from -4$0^{\circ}C$ to 11$0^{\circ}C$. Specimens were made via solid state processing method. Dielectric properties, piezoelctric properties, electric-field-induced strain were examined to clarify the effect of MnO$_2$ addition in 0.9MN-0.1PT. As the amount of MnO$_2$ increases, the maximum dielectric constant and the dielectric loss decreases. Q$_{m}$ increased by increasing the doping contents of Mn. When 0.5wt% MnO$_2$ was doped, Q$_{m}$ increased from 95 to 480. The electric-filed-induced strain and polarization decreases as the amount of MnO$_2$ increases. From the experimental results, it was suggested that Mn behaves as an ferroelectric domain pinning element.ent.

  • PDF

Impact of Ba Substitution on the Magnetocaloric Effect in La1-xBaxMnO3 Manganites

  • Hussain, Imad;Anwar, M.S.;Kim, Eunji;Koo, Bon Heun;Lee, Chan Gyu
    • Korean Journal of Materials Research
    • /
    • v.26 no.11
    • /
    • pp.623-627
    • /
    • 2016
  • $La_{1-x}Ba_xMnO_3$ (x = 0.30, 0.35 and 0.40) samples have been prepared by solid-state reaction method. The X-ray diffraction (XRD) study showed that all the samples crystallized in a rhombohedral structure with an R-3c space group. Variation of the magnetization as a function of the temperature and applied magnetic field was carried out. All the samples revealed ferromagnetic to paramagnetic (FM-PM) phase transition at the Curie temperature $T_C{\sim}342K$. The magnetic entropy change was also studied through examination of the measured magnetic isotherms M(H, T) near $T_C$. The magnetocaloric effect was calculated in terms of the isothermal magnetic entropy change. The maximum entropy change reaches a value of 1.192 J/kgK under a magnetic field change of 2.5T for the $La_{0.6}Ba_{0.4}MnO_3$ composition. The relative cooling power (RCP) is 79.31 J/kg for the same applied magnetic field.

Properties of the Blends of Ethylene-Vinyl Acetate and Ethylene-$\alpha$-Olefins Copolymers

  • Park Soochul;Yim Chaiseok;Lee Byung H.;Choe Soonja
    • Macromolecular Research
    • /
    • v.13 no.3
    • /
    • pp.243-252
    • /
    • 2005
  • The effect of the vinyl acetate (VA) content on the thermal, viscoelastic, rheological, morphological and mechanical behaviors in various blends of ethylene-vinyl acetate (EVA)/ethylene-$\alpha$-olefin copolymers was investigated using 28, 22 and $15 mol\%$ of VA in EVA. In the DSC melting and crystallization thermograms of all of the EVA systems blended with ethylene-$\alpha$-olefin copolymers, discrete peaks were observed which were related to the constituents. In the dynamic mechanical thermal analysis, the storage modulus increased with increasing content of ethylene-$\alpha$-olefin copolymers. In addition, the transition regions relating to the tan bpeaks varied with the VA content. The crossover point between G' and G" varied depending on the VA contents, and shear-thinning was more prominent in the EVA/EtBC system. In the SEM investigation, a discrete phase morphology was observed in both the EVA/EtBC and EVA/EtOC blends, but the contrast improved with decreasing VA content. However, the tensile strength and modulus improved, but the elongation at break reduced with decreasing VA content, implying that the ethylene-$\alpha$-olefin copolymers play the role of reinforcing materials. Thus, the EVA and ethylene-$\alpha$-olefin components in the copolymers are immiscible in the molten and solid states, but are nevertheless mechanically compatible.

Research Trend of Metal-Organic Frameworks for Magnetic Refrigeration Materials Application (자기 냉동 재료 응용을 위한 MOF의 연구 동향)

  • Kim, Suhwan;Son, Kwanghyo;Oh, Hyunchul
    • Korean Journal of Materials Research
    • /
    • v.30 no.3
    • /
    • pp.136-141
    • /
    • 2020
  • The magnetocaloric effect (MCE), which is the reversible temperature change of magnetic materials due to an applied magnetic field, occurs largely in the vicinity of the magnetic phase transition temperature. This phenomenon can be used to induce magnetic refrigeration, a viable, energy-efficient solid-state cooling technology. Recently, Metal-organic frameworks (MOFs), due to their structural diversity of tunable crystalline pore structure and chemical functionality, have been studied as good candidates for magnetic refrigeration materials in the cryogenic region. In cryogenic cooling applications, MCE using MOF can have great potential, and is even considered comparable to conventional lanthanum alloys and magnetic nanoparticles. Owing to the presence of large internal pores, however, MOF also exhibits the drawback of low magnetic density. To overcome this problem, therefore, recent reports in literature that achieve high magnetic entropy change using a dense structure formation and ligand tuning are introduced.