Browse > Article
http://dx.doi.org/10.3740/MRSK.2020.30.3.136

Research Trend of Metal-Organic Frameworks for Magnetic Refrigeration Materials Application  

Kim, Suhwan (Department of Energy Engineering, Gyeongnam National University of Science and Technology)
Son, Kwanghyo (Max Planck Institute for Intelligent Systems)
Oh, Hyunchul (Department of Energy Engineering, Gyeongnam National University of Science and Technology)
Publication Information
Korean Journal of Materials Research / v.30, no.3, 2020 , pp. 136-141 More about this Journal
Abstract
The magnetocaloric effect (MCE), which is the reversible temperature change of magnetic materials due to an applied magnetic field, occurs largely in the vicinity of the magnetic phase transition temperature. This phenomenon can be used to induce magnetic refrigeration, a viable, energy-efficient solid-state cooling technology. Recently, Metal-organic frameworks (MOFs), due to their structural diversity of tunable crystalline pore structure and chemical functionality, have been studied as good candidates for magnetic refrigeration materials in the cryogenic region. In cryogenic cooling applications, MCE using MOF can have great potential, and is even considered comparable to conventional lanthanum alloys and magnetic nanoparticles. Owing to the presence of large internal pores, however, MOF also exhibits the drawback of low magnetic density. To overcome this problem, therefore, recent reports in literature that achieve high magnetic entropy change using a dense structure formation and ligand tuning are introduced.
Keywords
metal-organic frameworks; magnetic refrigeration; magnetocaloric effect;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Wang, D. Liu and W. Lin, J. Am. Chem. Soc., 135, 13222 (2013).   DOI
2 P. Weiss, A. Piccard, Comptes Rendus, 166, 352 (1918).
3 N. R. Ram, M. Prakash, U. naresh, N. S. Kumar, T. S. Sarmash, T. Subbarao, R. J. Kumar, G. R. Kumar and K. C. B. Naidu, J. Supercond. Novel Magn., 31, 1971 (2018).   DOI
4 J. B. Peng, Q. C. Zhang, X. J. Kong, Y. P. Ren, L. S. Long, R. B. Huang, L. S. Zheng and Z. Zheng, Angew. Chem., Int. Ed., 50, 10649 (2011).   DOI
5 G. Lorusso, J. W. Sharples, E. Palacios, O. Roubeau, E. K. Brechin, R. Sessoli, A. Rossin, F. Tuna, E. J. L. McInnes, D. Collison and M. Evangelisti, Adv. Mater., 25, 4653 (2013).   DOI
6 E. Bruck, J. Phys. D: Appl. Phys., 38, R381 (2005).   DOI
7 A. R. Dinsen, S. Linderoth and S. Morup, J. Magn. Magn. Mater., 253, 28 (2002).   DOI
8 S. Zhang, E. Duan, Z. Han, L Li and P. Cheng, Inorg. Chem., 54, 6498 (2015).   DOI
9 F. L. Hu, F. L. Jiang, J. Zheng, M. Y. Wu, J. D. Pang and M. C. Hong, Inorg. Chem., 54, 6081 (2015).   DOI
10 S. D. Han, X. H. Miao, S. J. Liu and X. H. Bu, Inorg. Chem. Front., 1, 549 (2014).   DOI
11 S. Biswas, A. K. Mondal and S. Konar, Inorg. Chem., 55, 2085 (2016).   DOI
12 V. Zelenak, M. Almasi, A. Zelenakova, P. Hrubovcak, R. Tarasenko, S. Bourelly and P. Llewellyn, Sci. Rep., 9, 15572 (2019).   DOI
13 R. Sibille, T. Mazet, B. Malaman and M. Francois, Chem. Eur. J., 18, 12970 (2012).   DOI
14 S. J. Liu, C. cao, S. L. Yao, T. F. Zheng, Z. X. Wang, C. Liu, J. S. Liao, J. L. Chen. Y. W. Li and H. R. Wen, Dalton Trans., 46, 64 (2017).   DOI
15 J. W. Wu, X. Wang, C. B. Tian and S. W. Du, Dalton Trans., 47, 2143 (2018).   DOI
16 Y. C. Chen, F. S. Guo, J. L. Liu, J. D. Leng, P. Vrabel, M. Orendac, J. Prokleska, V. Sechovsky and M. L. Tong, Chem. Eur. J., 20, 3029 (2014).   DOI
17 F. S. Guo, Y. C. Chen, J. L. Liu, J. D. Leng, Z. S. Meng, P. Vrabel, M. Orendac and M. L. Tong, Chem. Commun., 48, 12219 (2012).   DOI
18 J. P. Zhao, S. D. Han, X. Jiang, S. J. Liu, R. Zhao, Z. Chang and X. H. Bu, Chem. Commun., 51, 8288 (2015).   DOI