• 제목/요약/키워드: Solid-electrolyte

검색결과 698건 처리시간 0.025초

Degradation of SOFC Cell/Stack Performance in Relation to Materials Deterioration

  • Yokokawa, Harumi;Horita, Teruhisa;Yamaji, Katsuhiko;Kishimoto, Haruo;Brito, M.E.
    • 한국세라믹학회지
    • /
    • 제49권1호
    • /
    • pp.11-18
    • /
    • 2012
  • The characteristic features of solid oxide fuel cells are reviewed from the viewpoint of the thermodynamic variables to be developed inside cells/stacks particularly in terms of gradients of chemical potential, electrical potential and temperature and corresponding flows of air, fuel, electricity and heat. Examples of abrupt destruction of SOFC systems were collected from failures in controlling their steady flows, while continuous degradation was caused by materials behaviors under gradients of chemical potentials during a long operation. The local equilibrium approximation has been adopted in NEDO project on the durability/reliability of SOFC stacks/systems; this makes it possible to examine the thermodynamic stability/reactivity as well as mass transfer under the thermodynamic variable gradients. Major results of the NEDO project are described with a focus on degradation/deterioration of electrolyte and electrode materials.

연료극 집전체 최적화를 적용한 원통형 고체산화물 연료전지 단전지 성능 향상 (Development of Tubular Solid Oxide Fuel Cells with Advanced Anode Current Collection)

  • 김완제;이승복;송락현;박석주;임탁형;이종원
    • 한국수소및신에너지학회논문집
    • /
    • 제24권6호
    • /
    • pp.480-486
    • /
    • 2013
  • In this study, tubular SOFC unit cell with advanced anode current collector was fabricated to improve the cell performance. First, we prepared two types of single cells having the same manufacture processes such as the same electrolyte, electrode coating condition and sintering processes. And then to compare the developed single cell performance with conventional cells, we changed the anode current collecting methods. From the impedance analysis and I-V curve analysis, the cell performance of advanced cell is much higher than that of conventional cell.

Application of Atomic Layer Deposition to Solid Oxide Fuel Cells

  • Kim, Eui-Hyun;Ko, Myeong-Hee;Hwang, Hee-Soo;Hwang, Jin-ha
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.478.2-478.2
    • /
    • 2014
  • Atomic layer deposition (ALD) provides self-limiting processes based on chemisorption-based reactions. Such unique features allow for superior step coverage, atomic-scale control in thickness, and surface-dependent reaction controls. Furthermore, the surface-limited deposition enables the artificial deposition of oxide and/or metallic materials onto the porous systems as long as the supply is guaranteed in terms of time in providing reactant species and removing the byproducts and redundant reactants. The unique feature of atomic layer deposition is applied to solid oxide fuel cells whose incorporates two porous cathode and anode compartments in addition to the ionic electrolyte. Specific materials are deposited to the surface sites of porous electrodes, with the aim to controlling the triple phase boundaries crucial for the optimized SOFC performances. The effect of ALD on the SOFC performance is characterized using current-voltage characteristics in addition to frequency-dependent impedance spectroscopy. The pros and cons of ALD-controlled SOFCs are discussed toward high-performance SOFC systems.

  • PDF

전사법을 이용한 SOFC Cell 제작 및 출력특성 (Fabrication of SOFC cell by transcription-method)

  • 구자빈;최병현;지미정;안용태;황해진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.91.1-91.1
    • /
    • 2011
  • 고체산화물 연료전지(Solid Oxide Fuel Cell이하 SOFC)는 연료가 갖는 화학에너지를 연소과정 없이, 공기와 H2, CO, CH4와 같은 환원성 가스를 공급받아 $600{\sim}1000^{\circ}C$에서 전기화학적 반응을 통하여 직접 전기를 얻는 방식이다. SOFC는 $700^{\circ}C$ 이상의 고온에서 고체산화물이 연료와 공기가 반응하여 전기와 열을 동시에 생산하기 때문에 carnot cycle의 제한을 받지 않아 발전효율이 40% 이상으로 고효율이고, NOx 및 SOx를 배출하지 않아 무공해이며, moving parts가 없어 소음이 나지 않고, 건설과 증설이 지역이나 기후 조건에 제약 없이 용이하고, 다양한 용량이 가능하며, 고가의 백금 촉매를 사용하지 않으며, 수소, 석탄가스, 천연가스 등의 연료를 사용할 수 있는 장점이 있음, 또한 다향한 형태로 제작할 수 있으며 전해질이 고체에서 전해질 손실 및 보충에 문제가 없고 타 연료전지에 비해 개질기가 필요 없어 발전시스템이 간단하고 경량화가 가능하다. 전사법은 paste를 제작하여 전사용지에 Screen printing하여 건조 후 coating하는 방법으로 기존의 여러 coating 방법보다 제작이 용이하고 소재의 크기, 두께조절이 간편하며, 구성층의 표면조도나 굴곡에 대응이 용이한 방법이다. 본 실험에서는 paste 제조, 전사법을 이용하여 Anode, AFL, Electrolyte, CFL, Cathode전사지를 제작하고 이를 세라믹 평관형 지지체에 변수로 두께 조건별 Coating 한 후 $1400^{\circ}C$ 소결을 진행하여 SEM 분석으로 미세구조 관찰, 출력특성 및 Impedance을 확인하였다.

  • PDF

Characteristics of Lanthanum Silicates Electrolyte for Solid Oxide Fuel Cells

  • Lee, Dong-Jin;Lee, Sung-Gap;Noh, Hyun-Ji;Jo, Ye-Won
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권4호
    • /
    • pp.194-197
    • /
    • 2015
  • La9.33(Si5V1)O26 ceramics were fabricated by the mixed oxide method for solid oxide electrolytes. La9.33(Si5V1)O26 specimens showed the hexagonal, space group P63 or P63/m, and the unit cell volume increased when the sintering temperature increased. The specimen sintered at 1,400℃ showed the X-ray patterns of the homogeneous apatite single phase without the second phase, such as La2SiO5 and SiO2. The specimen sintered at 1,400℃ showed the maximum sintered density of 4.93 g/cm3. When the sintering temperature increased, the electrical conductivities increased, the activation energy decreased and the values were 7.83×10−4 S/cm, 1.61 eV at 600℃, respectively.

YSZ 전해질을 이용한 농담전지식 자동차용 NOx센서 (Potentiometric NOx sensors for automotive exhaust using YSZ(yittria stabilized zirconia) electrolyte)

  • 박진수;박광철;박종욱
    • 센서학회지
    • /
    • 제16권6호
    • /
    • pp.434-440
    • /
    • 2007
  • Two kinds of new NOx sensing mechanism was proposed and examined. One of those was potentiomtric sensor based on the measurement of decomposed oxygen from NO using YSZ porous diffusion barrier and Pd catalytic electrode. The sensor based on decomposed oxygen measurement responded to the range of 300 - 1000 ppm NO in $N_{2}$ environment and the sensitivities were coincident with theoretical values at 700 and $800^{\circ}C$ but the decomposition rate depended on gas flow rate. The other sensor was equilibrium potentiometric type using $Gd_{2}O_{3}$-nitrates solid solution as sensing material. The sensor using $Gd_{2}O_{3}$-nitrates solid solution was suitable for NOxxsensing at $700^{\circ}C$ in 5 % oxygen and the sensitivity was 19.3 mV/decade. However, long term stability of the sensing material at high temperature was not sufficient.

Fabrication and Characterization of Composite LSCF-Ag Cathode for Solid Oxide Fuel Cells using Electron Beam Irradiation Process

  • Kang, Hyun Suk;Jung, Yung-Min;Song, Rak-Hyun;Peck, Dong-Hyun;Park, ChangMoon;Lee, Byung Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권10호
    • /
    • pp.2969-2973
    • /
    • 2014
  • A new process to fabricate a composite LSCF-Ag cathode material for SOFCs by electron beam (e-beam) irradiation process has been suggested for operation under intermediate temperature range of $600-700^{\circ}C$. A composite LSCF-Ag cathode with uniformly coated Ag nanoparticles on the surface of the LSCF material was prepared by a facile e-beam irradiation method at room temperature. The morphology of the composite LSCF-Ag material was analyzed using a TEM, FE-SEM, and EDS. The prepared composite LSCF-Ag material can play a significant role in increasing the electro-catalytic activities and reducing the operating temperature of SOFCs. The performance of a tubular single cell prepared using the composite LSCF-Ag cathode, YSZ electrolyte and a Ni/YSZ anode was evaluated at reduced operating temperature of $600-700^{\circ}C$. The micro-structure and chemical composition of the single cell were investigated using a FE-SEM and EDS.

Programmable Metallization Cell 응용을 위한 Ag-doped 칼코게나이드 박막의 전기적 저항 변화 특성 (Properties on Electrical Resistance Change of Ag-doped Chalcogenide Thin Films Application for Programmable Metallization Cell)

  • 최혁;구상모;조원주;이영희;정홍배
    • 한국전기전자재료학회논문지
    • /
    • 제20권12호
    • /
    • pp.1022-1026
    • /
    • 2007
  • We have demonstrated new functionalities of Ag doped chalcogenide glasses based on their capabilities as solid electrolytes. Formation of such amorphous systems by the introduction of silver via photo-induced diffusion in thin chalcogenide films is considered. The influence of silver on the properties of the newly formed materials is regarded in terms of diffusion kinetics and Ag saturation is related to the composition of the hosting material. Silver saturated chalcogenide glasses have been used in the formation of solid electrolyte which is the active medium in programmable metallization cell (PMC) devices. In this paper, we investigated electrical and optical properties of Ag-doped chalcogenide thin film on changed thickness of Ag and chalcogenide thin films, which is concerned at Ag-doping effect of PMC cell. As a result, when thickness of Ag and chalcogenide thin film was 30 nm and 50 nm respectively, device have excellent characteristics.

Synthesis, Characterization, DFT Modeling and Antimicrobial Studies on the Ti(IV), Y(III) and Ce(IV) Ofloxacin Solid Complexes

  • Sadeek, Sadeek A.;Zordok, Wael A.;El-Shwiniy, Walaa H.
    • 대한화학회지
    • /
    • 제57권5호
    • /
    • pp.574-590
    • /
    • 2013
  • A new solid complexes of Ti(IV), Y(III) and Ce(IV) have been synthesized with ofloxacin. The formulae and structure of the complexes have been proposed in the light of analytical, spectral ($^1H$ NMR, IR and UV-Visible), magnetic, molar conductivities and thermal studies. The complexes are soluble in DMSO-$d_6$ and DMF. The measured molar conductance values indicate that, the three complexes are electrolyte in nature. The results support the formation of the complexes and indicated that ofloxacin reacts as a bidentate ligand chelate to the metal ion through the pyridone oxygen and one carboxylato oxygen. The kinetic parameters of thermogravimetric and its differential have been evaluated by using Coats Redfern (CR) and Horowitz-Metzeger (HM) methods. The thermodynamic data reflect the thermal stability for all complexes. The metal- ligand binding of the Ti(IV), Y(III) and Ce(IV) complexes is predicted using density funcational theory at the B3LYP-CEP-31G level of theory and total energy, dipole moment estimation of different Ti(IV), Y(III) and Ce(IV) ofloxacin structures. The biological activities of the ofloxacin, inorganic salts and their metal complexes were assayed against different bacterial species.

Symmetrical Solid Oxide Electrolyzer Cells (SOECs) with La0.6Sr0.4Co0.2Fe0.8O3 (LSCF)-Gadolinium Doped Ceria (GDC) Composite Electrodes

  • Lee, Kyoung-Jin;Lee, Min-Jin;Park, Seok-hoon;Hwang, Hae-Jin
    • 한국세라믹학회지
    • /
    • 제53권5호
    • /
    • pp.489-493
    • /
    • 2016
  • Scandia ($Sc2O_3$)-stabilized zirconia (ScSZ) electrolyte-supported symmetrical solid oxide electrolyzer cells (SOECs), in which lanthanum strontium cobalt ferrite (LSCF)-gadolinia ($Gd_2O_3$)-doped ceria (GDC) composite materials are used as both the cathode and anode, were fabricated and their high temperature steam electrolysis (HTSE) performance was investigated. Current density-voltage curves were obtained for cells operated in 10% $H_2O$/90% Ar at 750, 800, and $850^{\circ}C$. It was possible to determine the ohmic, cathodic, and anodic contributions to the total overpotential using the three-electrode technique. The HTSE performance was significantly improved in the symmetrical cell with LSCF-GDC electrodes compared to the cell consisting of an Ni-YSZ cathode and LSCF-GDC anode. It was found that the overpotential due to the LSCF-GDC cathode largely decreased and, at a given current density, the total cell voltage decreased, which resulted in the enhanced hydrogen production rate in the symmetrical cell.