Browse > Article
http://dx.doi.org/10.4313/TEEM.2015.16.4.194

Characteristics of Lanthanum Silicates Electrolyte for Solid Oxide Fuel Cells  

Lee, Dong-Jin (Department of Ceramic Engineering, RIGET, Gyeongsang National University)
Lee, Sung-Gap (Department of Ceramic Engineering, RIGET, Gyeongsang National University)
Noh, Hyun-Ji (Department of Ceramic Engineering, RIGET, Gyeongsang National University)
Jo, Ye-Won (Department of Ceramic Engineering, RIGET, Gyeongsang National University)
Publication Information
Transactions on Electrical and Electronic Materials / v.16, no.4, 2015 , pp. 194-197 More about this Journal
Abstract
La9.33(Si5V1)O26 ceramics were fabricated by the mixed oxide method for solid oxide electrolytes. La9.33(Si5V1)O26 specimens showed the hexagonal, space group P63 or P63/m, and the unit cell volume increased when the sintering temperature increased. The specimen sintered at 1,400℃ showed the X-ray patterns of the homogeneous apatite single phase without the second phase, such as La2SiO5 and SiO2. The specimen sintered at 1,400℃ showed the maximum sintered density of 4.93 g/cm3. When the sintering temperature increased, the electrical conductivities increased, the activation energy decreased and the values were 7.83×10−4 S/cm, 1.61 eV at 600℃, respectively.
Keywords
SOFC; Lanthanum silicate; La9.33$(Si_5V_1)O_{26}$; Mixed-oxide method;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Nakayma, T. Kageyama, H. Aono, Y. J. Sadaoka, Mater. Chem., 5, 1801 (1995). [DOI: http://dx.doi.org/10.1039/jm9950501801]   DOI
2 S. Shin, H. H. Huang, and M. Ishigame, Solid State Ionics, 40, 910 (1990). [DOI: http://dx.doi.org/10.1016/01672738(90)90151-G]   DOI
3 A. D. Brailsford and D. K Hohnke, Solid State Ionics, 11, 133 (1983). [DOI: http://dx.doi.org/10.1016/0167-2738(83)90050-4]   DOI
4 R. A. Alberty and R. J. Silbey, Physical Chemistry (New York, Wiley, 1997).
5 W. Stiller, Arrhenius Equation and non-equilibrium kinetics: 100 years Arrhenius Equation. Leipzig, BSB B.G. Teubner, (1989)
6 K. D. Kruer and Ann, Rev. Mater. Res., 33, 333 (2003). [DOI: http://dx.doi.org/10.1146/annurev.matsci.33.022802.091825]   DOI
7 H. Arikawa, H. Nishiguchi, T. Ishihara, and Y. Takita, Solid State Ionics, 136, 31 (2000). [DOI: http://dx.doi.org/10.1016/S01672738(00)00386-6]   DOI
8 X. Zhang, S. Ohara, R. Maric, H, OKawa, T. Fukui, H. Yoshida, T. Inagaki, and K. Miura, Solid State Ionics, 133, 153 (2000). [DOI: http://dx.doi.org/10.1016/S0167-2738(00)00744-X]   DOI
9 M. Hrovat, A. Ahmad-Khanlou, Z. Samarzija, and J. Hole, Mater. Res. Bull., 34, 2027 (1999). [DOI: http://dx.doi.org/10.1016/ S0025-5408(99)00220-2]   DOI
10 E. Djurado and M. Labeau, J. Anal. Chem., 365, 277 (1999). [DOI: http://dx.doi.org/10.1007/s002160051488]   DOI
11 J. S. Lee, M. Lerch, J. Maier, J. Solid State Chemistry, 179, 270 (2006). [DOI: http://dx.doi.org/10.1016/j.jssc.2005.10.012]   DOI
12 H. Yoshioka, J. Am. Ceram. Soc., 90, 3099 (2007). [DOI: http:// dx.doi.org/10.1111/j.1551-2916.2007.01862.x]   DOI
13 E. Kendrick, M. Islam, and P. Slater, J. Mater. Chem., 17, 3104 (2007). [DOI: http://dx.doi.org/10.1039/b704426g]   DOI
14 J. R. Tolchard, M. S. Islam, and P. R. Slater, J. Mater. Chem., 12, 1956 (2005).
15 G. Blasse, J. Solid State Chem., 12, 181 (1975). [DOI: http:// dx.doi.org/10.1016/0022-4596(75)90009-2]   DOI
16 S. C. Singhal and K. Kendall, High temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications (Elsevier, Oxford, UK, 2003).