• Title/Summary/Keyword: Solid-electrolyte

Search Result 698, Processing Time 0.025 seconds

Studies on the Development of the Automatic Blood Analyzer with Silicone Rubber-Based Solid-State $K^+$- and $Na^+$-Selective Electrodes (실리콘러버 지지체의 $K^+$$Na^+$ 선택성 고체형 전극을 이용한 자동혈액분석기의 개발에 대한 연구)

  • Kang, Myung-Sung;Jeon, Woo-Sung;Kim, Sun-Kwan;Kim, Dea-Hoon;Cha, Geun-Sig;Nam, Hak-Hyun;Cho, Han-Ik;Park, Sung-Sup
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.11
    • /
    • pp.26-33
    • /
    • 1995
  • Silicone Rubber (SR)-based potassium- and sodium-selective solid-state electrodes have been developed for the portable blood electrolyte analyzer system. The electrochemical performance of these electrodes have been evaluated with a static experimental setup and with the newly developed blood electrolyte analyzer system (model; HS603). It has been shown that their potentiometric properties are essentially comparable to those of PVC-based ion-selective electrodes, but with greatly improved lifetime (200 and 40 days for potassium and sodium sensors, respectively) and potential stability (within $\pm0.1$ mV). Clinical tests have been performed with real serum samples and the results have been compared with those obtained from Ciba-Corning BGA 288 system; correlations were excellent, proving its practical utility as a new commercial system.

  • PDF

A Study on the PEM Electrolysis Characteristics Using Ti Mesh Coated with Electrocatalysts (Ti Mesh 처리 촉매전극을 이용한 고체고분자 전해질 전기분해 특성연구)

  • Sim, Kyu-Sung;Kim, Youn-Soon;Kim, Jong-Won;Han, Sang-Do
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.7 no.1
    • /
    • pp.29-37
    • /
    • 1996
  • Alkaline water electrolysis has been commercialized as the only large-scale method for a long time to produce hydrogen and the technology is superior to other methods such as photochemical, thermochemical water splitting, and thermal decomposition method in view of efficiency and related technical problem. However, such conventional electrolyzer do not have high electric efficiency and productivity to apply to large scale hydrogen production for energy or chemical feedstocks. Solid polymer electrolyte water electrolysis using a perfluorocation exchange membrane as an $H^+$ ion conductor is considered to be a promising method, because of capability for operating at high current densities and low cell voltages. So, this is a good technology for the storage of electricity generated by photovoltaic power plants, wind generators and other energy conversion systems. One of the most important R&D topics in electrolyser is how to minimize cell voltage and maximize current density in order to increase the productivity of the electrolyzer. A commercialized technology is the hot press method which the film type electrocatalyst is hot-pressed to soild polymer membrane in order to eliminate the contact resistance. Various technologies, electrocatalyst formed over Nafion membrane surface by means of nonelectrolytic plating process, porous sintered metal(titanium powder) or titanium mesh coated with electrocatalyst, have been studied for preparation of membrane-electrocatalyst composites. In this study some experiments have been conducted at a solid polymer electrolyte water electrolyzer, which consisted of single cell stack with an electrode area of $25cm^2$ in a unipolar arrangement using titanium mesh coated with electrocatalyst.

  • PDF

Preparation of Solid Polymer Electrolytes of PSf-co-PPSS/Heterooolyacid [HPA] Composite Membrane for Hydrogen Production via Water Elecrolysis (PSf-co-PPSS/HPA를 이용한 수소제조 수전해용 고체 고분자 전해질 복합 막의 제조)

  • Jung, Yun-Kyo;Lee, Hyuck-Jae;Jang, In-Young;Hwang, Gab-Jin;Bae, Ki-Kwang;Sim, Kyu-Sung;Kang, An-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.2
    • /
    • pp.103-110
    • /
    • 2005
  • Proton conducting solid polymer electrolyte (SPE) membranes have been used in many energy technological applications such as water electolysis, fuel cells, redox-flow battery, and other electrochemical devices. The availability of stable membranes with good electrochemical characteristics as proton conductivity at high temperatures above 80 $^{\circ}C$ and low cost are very important for its applications. However, the presently available perfluorinated ionomers are not applicable because of high manufacturing cost and high temperature use to the decrease in the proton conductivity and mechanical strength. In order to make up for the weak points, the block copolymer (BPSf) of polysulfone and poly (phenylene sulfide sulfone) were synthesized and sulfonated. The electrolyte membranes were prepared with phosphotungstic acid (HPA)/sulfonated BPSf via solution blending. This study would be desirable to investigate the interaction between the HPA and sulfonated polysulfone. The results showed that the characteristics of SPSf/HPA blend membrane was a better than Nafion at high temperature, 100 $^{\circ}C$. These membranes proved to have a high proton conductivity, $6.29{\times}10-2$ S/cm, a water content, 23.9%, and a ion exchange capacity, 1.97 meq./g dry membrane. Moreover, some of the membranes kept their high thermal and mechanical stability.

The correlation between ionic conductivity and cell performance with various compositions of polymer electrolyte in dye-sensitized solar cells (염료감응형 태양전지에서의 고분자 전해질 종류에 따른 이온전도도와의 상호관계)

  • Cha, Si-Young;Kim, Su-Jin;Lee, Yong-Gun;Kang, Yong-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.306-308
    • /
    • 2007
  • Poly(ethylene glycol) dimethyl ether (PEGDME)/fumed silica/ 1-methyl -3-propylimidazolium iodide (MPII)/$I_2$ mixtures were used as polymer electrolytes in solid state dye-sensitized solar cells (DSSCs). The contents of MPII were changed and the concentration of $I_2$ was fixed at 0.1 mole% with respect to the MPII. The maximum ionic conductivity was obtained at [EG]:[MPII]:[$I_2$]=10:1.5:0.15. It was supposed that the maximum of ionic conductivities would match with that of cell efficiencies, if the ionic conductivity is a rate determining step in the sol id state DSSCs. However, the maximum composition did not show the maximum solar cell performance, indicating the mismatch between ionic conductivity and cell performance. This suggests that the ionic conductivity may not be the rate controlling step in determining the cell efficiency in these experimental conditions, whereas other parameters such as the electron recombination might play an important role. Thus, we tried to modify the surface of the $TiO_2$ particles by coating a thin metal oxide such as $Al_2O_3$ or $Nb_2O_5$ layer to prevent electron recombination. As a result, the maximum of the cell efficiency was shifted to that of the ionic conductivity. The peak shifts were also attempted to be explained by the diffusion coefficient and the lifetime of electrons in the $TiO_2$ layer.

  • PDF

Properties of Low Temperature Sintering of La0.8Sr0.2Ga0.8Mg0.2-xZnxO2.8 (X = 0.0 - 0.05) Electrolyte (La0.8Sr0.2Ga0.8Mg0.2-xZnxO2.8(X=0.0~0.05) 전해질의 저온 소결 특성)

  • Lim, Kyoung Tae;Lee, Chung Hwan;Yu, Ji Haeng;Peck, Dong-Hyun;Baik, Kyeong Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.3
    • /
    • pp.208-217
    • /
    • 2014
  • $La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.2-x}Zn_xO_{2.8}$(LSGMZ, X=0-0.05) was prepared using a solid state reaction method. Two secondary phases ($LaSrGaO_4$ and $LaSrGa_3O_7$) of powders were identified by X-ray diffraction analysis. The relative amount of these secondary phases depended on the calcination conditions (temperature and time) and Zn content. The sintering density of LSGMZ was enhanced by increasing the Zn content and calcination temperature at the low sintering temperatures ($1250-1300^{\circ}C$). The relationship between the sintering density of LSGMZ and the synthesis conditions was discussed considering the phase analysis results.

Characterization of electrochemical behaviour for supercapacitor based on porous activated carbon composite with various contents of metal-organic framework(MOF) (금속유기골격체(Metal-organic Framework)의 함량에 따른 다공성 활성탄소 복합재료 기반 슈퍼커패시터의 전기화학적 거동 분석)

  • Jeong, Hyeon Taek;Kim, Yong Ryeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.1200-1207
    • /
    • 2020
  • We have fabricated the supercapacitor composed of porous activated carbon, metal-organic framework (MOF) with polymer based solid state electrolyte as a "ion gel" and characterized its electrochemical behaviour as a function of the MOF contents. The electrochemical properties of the supercapacitor were analyzed via cyclic voltammetry(CV), electrochemical impedance spectroscopy(EIS) and galvanostatic charge/discharge test. As a results, the supercapacitor based on porous activated carbon/MOF composite showed the highest capacitance value at 0.5 wt% of MOF contents and decreased capacitance with increase MOF contents over the 0.5 wt%. Consequently, the porous activated carbon/MOF composite based supercapacitor is applicable to various aspect for energy storage device.

Fabrication and Sensing Properties of NASICON Thick Film SO2 Gas Sensor Using Screen-print Method (스크린 인쇄법을 이용한 NASICON 후막 SO2가스 센서의 제조 및 특성)

  • Bae, J.C.;Lee, S.T.;Jun, H.K.;Bang, Y.I.;Lee, D.D.;Huh, J.S.
    • Korean Journal of Materials Research
    • /
    • v.13 no.2
    • /
    • pp.115-119
    • /
    • 2003
  • The thick film type sensor having Pt/Na Super Ionic Conductor(NASICON) solid electrolyte/Pt/$Na_2$$SO_4$/Pt catalyst system for $SO_2$gas was fabricated by screen-print method. The phase of Na Super Ionic Conductor solid electrolyte sintered at different temperature of 1050, 1150,$ 1250^{\circ}C$ and for different time of 1.5, 2.5, 3.5 hr were investigated by XRD. The Electromotive Force variation of the sensor with $SO_2$concentrations and operating temperatures were investigated. The major phase of Na Super Ionic Conductor film sintered at 115$0^{\circ}C$ for 3.5 hr was sodium zirconium silicon phosphate($Na_3$Zr$_2$$Si_2$PO$_{12}$). The Nernst's slope of Na Super Ionic Conductor sensor for $SO_2$gas with the variation of concentration from 10 to 100 ppm was 167.14 ㎷/decade at the operating temperature of $500 ^{\circ}C$. The increase of oxygen partial pressure was not affected to the variation of Nernst's slope.e.

Effects of Separator Carbonization on the Characteristics of Aluminium Polymer Condenser (알루미늄 고분자 콘덴서의 특성에 대한 절연지 탄화의 영향)

  • Kim, Jae Kun;Yu, Hyung Jin;Hong, Yoong He;Park, Mi Jin;Park, Seung Youl
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.539-546
    • /
    • 2006
  • A study on the polymerization of polyethylenedioxythiophene (PEDOT) and the carbonization process of a separator was carred out in order to apply conductive polymer PEDOT to the winding typed aluminum condenser as a solid electrolyte and a negative electrode. PEDOT was polymerized with ethylenedioxythiophene (EDOT) as a monomer and ferric-p-toluenesulfonate as an oxidizing agent. The separator of condenser element was carbonized to control its fibrous tissue for the purpose of making it easy to impregnate the PEDOT solution into the microporous etched pit of aluminum foil by preventing separator from concentrating the PEDOT solution on itself. The characteristics of condenser such as capacitance, dissipation factor, equivalent series resistance, and thermal resistance depended on a carbonization temperature and a carbonization time. It was found that a thickness and a density of the used separator were major parameters of carbonization process and the characteristics of condenser were affected by these parameters.

Electrochemical Properties of La4Ni3O10-GDC Composite Cathode by Facile Sol-gel Method for IT-SOFCs

  • Choi, Sihyuk;Kim, Guntae
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.265-270
    • /
    • 2014
  • Among the Ruddlesden-Popper series, $La_4Ni_3O_{10}$ has received widespread attention as a promising cathode material by reason of its favorable properties for realizing high performance of intermediate temperature solid oxide fuel cells (IT-SOFCs). The $La_4Ni_3O_{10}$ cathode is prepared using the facile sol-gel method by employing tri-blockcopolymer (F127) to obtain a single phase in a short sintering time. There are no reactions between the $La_4Ni_3O_{10}$ cathode and the $Ce_{0.9}Gd_{0.1}O_{2-\delta}$ (GDC) electrolyte upon sintering at $1000^{\circ}C$, indicating that the $La_4Ni_3O_{10}$ cathode has good chemical compatibility with the GDC electrolyte. The maximum electrical conductivity of $La_4Ni_3O_{10}$ reaches approximately 240 S $cm^{-1}$ at $100^{\circ}C$ and gradually decreases with increasing temperaturein air atmosphere. The area specific resistance value of $La_4Ni_3O_{10}$ composite with 40 wt% GDC is $0.435{\Omega}cm^2$ at $700^{\circ}C$. These data allow us to propose that the $La_4Ni_3O_{10}$-GDC composite cathode is a good candidate for IT-SOFC applications.

Electrochemical Lithium Intercalation within Graphite from Ionic Liquids containing BDMI+ Cation (BDMI+ 양이온을 함유한 이온성 액체로부터 흑연으로의 전기화학적 리튬 삽입)

  • Lee, You-Shin;Jeong, Soon-Ki;Lee, Heon-Young;Kim, Chi-Su
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.3
    • /
    • pp.186-192
    • /
    • 2010
  • In situ electrochemical atomic force microscopy (ECAFM) observations of the surface of highly oriented pyrolytic graphite (HOPG) was performed before and after cyclic voltammetry in lithium bis(fluorosulfonyl)imide (LiTFSI) dissolved in 1-buthyl-2,3-dimethylimidazolium (BDMI)-TFSI to understand the interfacial reactions between graphite and BDMI-based ionic liquids. The formation of blisters and the exfoliation of graphene layers by the intercalation of $BDMI^+$ cations within HOPG were observed instead of reversible lithium intercalation and de-intercalation. On the other hand, lithium ions are reversibly intercalated into the HOPG and de-intercalatied from the HOPG without intercalation of the $BDMI^+$ cations in the presence of 15 wt% of 4.90 mol/$kg^{-1}$ LiTFSI dissolved in propylene carbonate (PC). ECAFM results revealed that the concentrated PC-based solution is a very effective additive for preventing $BDMI^+$ intercalation through the formation of solid electrolyte interface (SEI).