• Title/Summary/Keyword: Solid-Phase Extraction (SPE)

Search Result 199, Processing Time 0.026 seconds

The Study on the Analysis Method of Tetrodotoxin in Puffer Fish (복어 중 테트로도톡신 분석법에 관한 연구)

  • Kang, Young-Woon;Lee, Yoon-Suk;Park, Sung-Kug;Seo, Jung-Heok;Kim, Mee-Hye
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.1
    • /
    • pp.37-41
    • /
    • 2012
  • The current standard for testing tetrodotoxin (TTX) in foodstuffs is the mouse bioassay (MBA) in Korea as in many other countries. However, this test suffers from potential ethical concerns over the use of live animals. In addition, the mouse bioassay does not test for a specific toxin thus a sample resulting in mouse incapacitation would need further confirmatory testing to determine the exact source toxin (e.g., TTX, STX, brevotoxin, etc.). Furthermore, though the time of death is proportional to toxicity in this assay, the dynamic range for this proportional relationship is small thus many samples must be diluted and new mice be injected to yield a result that falls within the quantitative dynamic range. Therefore, in recent years, there have been many efforts in this field to develop alternative assays. High performance liquid chromatography (HPLC) coupled with mass spectrometry (MS) has been emerged as one of the most promising options. A LC-MS-MS method involves solid-phase extraction (SPE) and followed by analysis using an electrospray in the positive ionization mode and multiple reactions monitoring (MRM). To adopt LC-MS-MS method as alternative standard for testing TTX, we performed a validation study for the quantification of TTX in puffer fish. This LC-MS-MS method showed good sensitivity as limits of detection (LOD) of $0.03{\sim}0.08{\mu}g/g$ and limits of quantification (LOQ) of $0.10{\sim}0.25{\mu}g/g$. The linearity ($r^2$) of tetrodotoxin were 0.9986~0.9997, the recovery were 80.9~103.0% and the relative standard deviations (RSD) were 4.3~13.0%. The correlation coefficient between the mouse bioassay and LC/MS/MS method was higher than 0.95.

Comparison of Liquid Chromatography-Mass/Mass Spectrometry (MS) and Gas Chromatography-MS for Quantitative Analysis of Indole-3-acetic acid and Indole-3-butyric acid from the Concentrated Liquid Fertilizer (Liquid Chromatography-Mass/Mass Spectrometry (MS)와 Gas Chromatography-MS를 이용한 농축 액상 비료제품 중 Indole-3-acetic acid 및 Indole-3-butyric acid 정량분석능 비교)

  • Kim, Jin Hyo;Park, Jong Min;Choi, Geun-Hyoung;Park, Yun-Ki;Im, Geon-Jae;Kim, Doo-Ho;Kwon, Oh-Kyung
    • Journal of Applied Biological Chemistry
    • /
    • v.56 no.1
    • /
    • pp.53-57
    • /
    • 2013
  • In here, we investigated the quantitative analysis method of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) with liquid chromatography-mass/mass spectrometry (LC-MS/MS) or gas chromatography-MS. Two ways of clean-up process were investigated for LC-MS/MS instrumental analysis of IAA, but both a simple dilution and hydrophile-lipophile balance (HLB) solid phase extraction (SPE) were not met the optimal recovery rates for quantitative analysis. On the other hand, the clean-up method for GC-MS was finally optimized through HLB-SPE from 250-folds diluted sample and methylation with trimethylsilyl chloride in methanol for 4 h. The limit of detection for methyl ester of IAA and IBA were both 1.4 mg/L, and recovery rates showed 93-107% from the concentrated liquid fertilizer.

Analysis of Multiple Pesticide Residues in Apples and Pears Using Gas-Liquid Chromatography (Gas-Liquid Chromatography를 이용한 사과 및 배 중의 농약 다성분 잔류분석법)

  • Park, Ju-Hwang;Kim, Taek-Kyum;Oh, Chang-Hwan;Kim, Jeong-Han;Lee, Young-Deuk;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.3
    • /
    • pp.148-157
    • /
    • 2004
  • A rapid analytical method was developed to determine multiple pesticide residues in apples and pears using gas-liquid chromatography (GLC). The samples were extracted with water-miscible solvents and purified by cleanup procedures serially comprising liquid-liquid partition and solid-phase extraction (SPE). Each analyte was separated and determined by a high-resolution GLC equipped with electron-capture detector (ECD) and nitrogen-phosphorous detector (NPD). A total of 196 pesticides, which were previously classified into 5 groups each for ECD and NPD based on their retention behaviors on the capillary column and responses to the detector, were subjected to the recovery experiment. In compliance with the analytical criteria, 70 to 120% of recovery and less than 20% relative standard deviation the proposed method could be successfully applied to analyze 136 and 133 pesticide residues in apples and pears, respectively, which enabled not only rapid screening but quantitation of the residues. Even though less reliability was resulted from unacceptable recovery range, rest of pesticides including 43 and 45 analyzes in apples and pears, could be also detected for their identity. The proposed method fliled to cover 17 and 18 pesticides for apples and pears, which mostly showed high polarity or heat-lability but could be suitable far fast surveilance or monitoring of fruit harvests.

Determination of acidic pharmaceuticals in aquatic environmental samples by LC/ESI-MS/MS (LC/ESI-MS/MS를 이용한 수질 환경 시료 중 산성의약물질 분석방법 비교)

  • Sim, Young-Eun;Cho, Hyun-Woo;Myung, Seung-Woon
    • Analytical Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.191-200
    • /
    • 2008
  • Pharmaceuticals and personal care products (PPCPs) are emerging contaminants in aquatic environmental samples. Therefore, it required rapidly and certainly analytical method for pharmaceuticals which are existed in environment. In this study, Liquid chromatography/tandem mass spectrometry (LC-MS/MS) with electrospray ionization (ESI) was used to measure the concentrations of 7 pharmaceuticals (quinoxaline-2-carboxylic acid, acetylsalicylic acid, diclofenac-Na, naproxen, ibuprofen, mefenamic acid, talniflumate) from environmental water or aquatic samples simultaneously. Effective sample clean-up by solid-phase extraction (SPE) prior to LC-MS/MS analysis is necessary. For further purification, Mixed Cation eXchange (MCX) and Hydrophilic-Lipophilic Balance (HLB) solid-phase extraction (SPE) cartridges were used to eliminate the remaining interferences. LODs (Limits of Detection) and MDLs (Method Detection Limits) for the spiked sample in fresh water were in the range of 0.05~1.50 pg/mL and 0.17~4.90 pg/mL, respectively. The absolute recovery in the concentration of 1.0 ng/mL were between 81.9 and 116.3%. The acidic pharmaceuticals were detected in concentrations of 0.018~16.925 ng/mL in aquatic environmental samples.

Development of Analytical Method for Fipronil and Fipronil-Sulfone in Animal Serum by LC-MS/MS (LC-MS/MS에 의한 동물 혈청 내 피프로닐 및 피프로닐 설폰 분석법 개발)

  • Lee, Jeongsun;Park, Na-Youn;Jung, Woong;Kho, Younglim
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.6
    • /
    • pp.415-419
    • /
    • 2019
  • Fipronil is an insecticide that belongs to the N-phenylpytazole and has been used mainly for an insect pest control. However, it is known that acute poisoning of the human body causes various symptoms such as dizziness, muscle weakness, dyspnea, skin irritation, and increased heart rate. Lately, eggs containing fipronil have been distributed and toxic problems are spreading around the world. In this study, we tried to develop analytical methods to evaluate the exposure of fipronil and fipronil sulfone in animal serum samples. The differences according to mobile phase and the results of liquid - liquid extraction and solid phase extraction pretreatment method were compared. Distilled water (A) and acetonitrile (B) were selected for the mobile phase, and the pretreatment method was determined by solid phase extraction. As a result of the method validation, the intra-day / inter-day accuracies were 82.2~114.1% and the precisions were less than 20%. The detection limit was 0.027 ng/ml for fipronil and 0.087 ng/ml for fipronil sulfone. The linearity obtained was satisfying, with a coefficient of determination (r2) higher than 0.99. The concentrations in some animal sera were determined using the methods of analysis for fipronil and fipronil sulfone in animal sera developed in this study. Using the method developed in this study, it could be used as an analytical method for human bio-monitoring of fipronil and fipronil sulfone as well as animal serum.

Investigation of Nonylphenols Contamination in Solvents and Solid-phase Extraction Cartridge, and its Removal Protocols (정밀분석용 용매 및 SPE의 Nonylphenols 오염평가 및 제거)

  • Park, Jong-Min;Choi, Geun-Hyonng;Kim, Jung-Im;Hong, Su-Myeong;Kwon, Oh-Kyung;Im, Geon-Jae;Kim, Jin-Hyo
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.1
    • /
    • pp.22-27
    • /
    • 2011
  • Nonylphenols are toxic compounds classified as endocrine disruptors. We investigated the nonylphenols clean-up procedures for the contamination control in the quantitative analysis. In this research we analyzed the residual nonylphenols in the solvent and the SPE cartridges. First, at the analysis of HPLC grade solvents (n-hexane, diethyl ether, ethyl acetate and its mixture), diethyl ether was confirmed the residue as 0.963 ${\mu}g/mL$, and we eliminated the contaminant through the distillation with $CaH_2$, Second, at the analysis of SPE cartridges (silica gel and Florisil), all products were showed the residue at 0.046~13.0 ${\mu}g/mL$, but unfortunately the residue in the cartridge were not easily removed with referenced methods in all tested SPE cartridges except in silica gel SPE cartridge with glass ware.

Establishment of Analytical Method for Pymetrozine Residues in Crops Using Liquid-Liquid Extraction(LLE) (액-액 분배법을 활용한 작물 중 pymetrozine의 잔류분석법 확립)

  • Yoon, Ji-Young;Moon, Hye-Ree;Park, Jae-Hun;Han, Ye-Hoon;Lee, Kyu-Seung
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.2
    • /
    • pp.107-116
    • /
    • 2013
  • Polar pesticides like pymetrozine (log $P_{ow}$: -0.18) are known to be difficult to analyze. The analytical method of pymetrozine using hydromatrix included in the official method of KFDA was uncommon and provided ambiguous evidence to confirm both the identity and the quantity. Therefore, precise single residue analytical method was developed in representative crops for using liquid-liquid extraction (LLE). The pymetrozine residue was extracted with methanol from 11 representative crops which comprised apple, blueberry, broccoli, cabbage, cherry, crown daisy, hulled rice, Korean cabbage, potato, rice and watermelon. The extract was purified serially by liquid-liquid extraction (LLE) and silica solid phase extraction (SPE). For rice and hulled rice samples, n-hexane partition was additionally adopted to remove nonpolar interferences, mainly lipids. The residue levels were analyzed by HPLC with DAD, using $C_8$ column. LOQ (limit of quantitation) of pymetroizinie was 1 ng (S/N > 10) and MQL (method quantitation limit) was 0.01 mg/kg. Mean recoveries from 11 crop samples fortified at three levels (MQL, 10 ${\times}$ MQL and 50 ${\times}$ MQL) in triplicate were in the range of 83.1~98.5% with coefficients of variation (CV) of less than 10%, regardless of sample type, which satisfies the criteria of KFDA. The method established in this study could be applied to most of crops as an official and general method for analysis of pymetrozine residue.

Determination of thyroid hormones in plasma samples by high performance liquid chromatograph/diode array detector/electrospray ionization mass spectrometer (HPLC/DAD/ESI-MS를 이용한 혈장시료 중 갑상선 호르몬 분석)

  • Kwak, Sun Young;Moon, Myeong Hee;Pyo, Heesoo
    • Analytical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.424-433
    • /
    • 2007
  • An analytical method for the determination of thyroid hormones in plasma samples has been studied by solid-phase extraction and high-performance liquid chromatography/diode array detector (DAD)/electrospray ionization (ESI)-mass spectrometer. Seven thyroid hormones were successfully separated by gradient elution on the reverse phase Hypersil ODS column (4.6 mm I.D., 250 mm length, particle size $5{\mu}m$) with ammonium formate buffer and acetonitrile. In addition, these compounds were confirmed by UV spectra and ESI-mass Spectra. The extraction recoveries of thyroid hormones in the plasma sample (at pH 3) were in the range of 74.5-115.7 % with solid-phase extraction by C18, followed by elution with 4 mL of methanol. The calibration curves showed good linearity with the correlation coefficients ($r^2$) varying from 0.9939 to 0.9978 and the detection limits of all analytes were obtained in the range of 20-50 ng/mL (38.1-162.8 pmol/mL). As a result, thyroxine was found in the range of 50.98-112.97 ng/mL in normal plasma samples.

Study on New Extraction Method of Microcystins from Cyanobacteria (남조류로부터 마이크로시스틴을 추출하는 새로운 추출법 연구)

  • Pyo, Dong Jin;Shin, Hyun Du
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.2
    • /
    • pp.149-155
    • /
    • 2001
  • A new analytical method of cyanobacterial toxins, i, e, microcysins was deveeloped using supercritical fluid extraction(SFE). The microcystins mcluded in the study are sparsely soluble in neat supercritical fluid CO$_2$ However, the microcystins were successfully extracted with a temary mixture(90% CO$_2$,9.0% methanol 1.0% water) at 40$^{\circ}$C and 250 atm. The SFE method developed in this study has several advantages over solid-phase extraction(SPE) sample preparation for the analysis of microcystins. Sample handling steps are minimized thus reducing possible losses of analytes and saving analysis time. No clean-up steps are employed in this SFE method. Althouhgh many methods have been described for microcystim RR and LR, the method using solid-phase extraction with ODS cartridges is the most commonly used. However, the adsorbing power of ODS caridges for microcystins is weak, so we have attempted to use a more polar CN cartridge, to increase the adsorbing power for microcystins. Lyophilized cells(100mg) were wxtracted with 5% (v/v) acetic acid. The extract was centrifuged and then the supernatant was applied to a CN cartridge. The cartridge which contained microcystins was rinsed with 5 ml of water and 5 ml of 0.5 M acetic acid. followed by 5 ml of 5% acetonitrile in water , and were determined by HPLC. Better recoveries and chromatogram were observed than with ODS cartridge.

  • PDF

Validation of a Simple HPLC Method for Determination of Nicardipine in Human Plasma and Its Application to Single-dose Pharmacokinetics (인체 혈장 중 니카르디핀의 정량을 위한 HPLC 분석법 검증 및 단일 용량 투여에 의한 약물동태 연구)

  • Im, Ho-Taek;Cho, Sung-Hee;Lee, Heon-Woo;Park, Wan-Su;Rew, Jae-Hwan;Choi, Young-Wook;Yong, Chul-Soon;Lee, Kyung-Tae
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.6
    • /
    • pp.461-465
    • /
    • 2005
  • A simple HPLC method with ultraviolet detection of nicardipine in human plasma was developed and validated. After drug extraction with solid phase extraction (SPE) method, chromatographic separation of nicardipine in plasma was achieved at $30^{\circ}C$ with a $C_{18}$ column and acetonitrile-0.02% phosphate buffer mixture (with 0.02% triethylamine, final pH 7.0), as mobile phase. Quantitative determination was performed by ultraviolet detection at 254 nm. The method was specific and validated with a limit of quantification of 5 ng/mL. The intra- and inter-day precision and accuracy were acceptable for all quality control samples including the lower limit of quantification. The applicability of the method was demonstrated by analysis of plasma after oral administration of a single 40 mg dose to 8 healthy subjects. From the plasma nicardipine concentration versus time curves, the mean $AUC_{t}$, was $134.04{\pm}59.72\;ng\;hr/mL$ and $C_{max}$ of $108.65{\pm}69.17\;ng/mL$ reached 1.5 hr after administration. The mean biological half-life of nicardipine was $3.93{\pm}0.82\;hr$. Based on the results, this simple and validated assay method could readily be used in any pharmacokinetic or bioequivalence studies using human.