• Title/Summary/Keyword: Solid to solid interface

Search Result 614, Processing Time 0.035 seconds

Microstructure and Creep Fracture Characteristics of Dissimilar SMA Welds between Inconel 740H Ni-Based Superalloy and TP316H Austenitic Stainless Steel (Inconel 740H 니켈기 초내열합금과 TP316H 스테인리스강의 이종금속 SMA 용접부의 미세조직과 크리프 파단 특성)

  • Shin, Kyeong-Yong;Lee, Ji-Won;Han, Jung-Min;Lee, Kyong-Woon;Kong, Byeong-Ook;Hong, Hyun-Uk
    • Journal of Welding and Joining
    • /
    • v.34 no.5
    • /
    • pp.33-40
    • /
    • 2016
  • The microstructures and the creep rupture properties of dissimilar welds between the Ni-based superalloy Inconel 740H and the non-stabilized austenitic stainless steel TP316H have been characterized. The welds were produced by shielded metal arc (SMA) welding process with the AWS A5.11 Class ENiCrFe-3 filler metal, commonly known as Inconel 182 superalloy. Postweld heat treatment at $760^{\circ}C$ for 4 hours was conducted to form ${\gamma}^{\prime}$ strengthener in Inconel 740H. The austenitic weld metal produced by Inconel 182 had a dendritic microstructure, and grew epitaxially from the both sides of Inconel 740H and TP316H base metals. Since both Inconel 740H and TP316H did not undergo any solid-state transformation during welding process, there were no heat-affected-zone (HAZ) sub-regions and the coarsoned grains near the weld interface were limited to a narrow region. The hardness of Inconel 182 weld metal was ~220 Hv. The gradual hardness decrease was detected at HAZ of TP316H, and the TP316H base metal displayed the lowest hardness value (~180 Hv) whilst the Inconel 740H showed the highest hardness value (~400 Hv). Fracture after creep occurred at the center of weld metal, regardless of creep condition. It was found that during creep the cracks initiated and propagated along interdendritic regions and grain boundaries at which Laves particles enriched in Nb, Si and Cr were present. The appropriate design of weld metal was discussed to suppress the creep-induced cracking of the present dissimilar weld.

Enhancement of light extraction efficiency in vertical light-emitting diodes with MgO nano-pyramids structure

  • Son, Jun-Ho;Yu, Hak-Ki;Lee, Jong-Lam
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03a
    • /
    • pp.16-16
    • /
    • 2010
  • GaN-based light-emitting diodes (LEDs) are attracting great interest as candidates for next-generation solid-state lighting, because of their long lifetime, small size, high efficacy, and low energy consumption. However, for general illumination applications, the external quantum efficiency of LEDs, determined by the internal quantum efficiency (IQE) and the light extraction efficiency, must be further increased. The IQE is determined by crystal quality and epitaxial layer structure and high value of IQE more than 70% for blue LEDs have been already reported. However, there is much room for improvement of light extraction efficiency because most of the generated photons from active layer remain inside LEDs by total internal reflection at the interface of semiconductor with air due to the high refractive index difference between LEDs epilayer (for GaN, n=2.5) and air (n=1). The light confining in LEDs will be reabsorbed by the metal electrode or active layer, reducing the efficacy of LEDs. Here, we present the first demonstration of enhanced light extraction by forming a MgO nano-pyramids structure on the surface of vertical-LEDs. The MgO nano-pyramids structure was successfully fabricated at room temperature using conventional electron-beam evaporation without any additional process. The nano-sized pyramids of MgO are formed on the surface during growth due to anisotropic characteristics between (111) and (200) plane of MgO. The ZnO layer with quarter-wavelength in thickness is inserted between GaN and MgO layers to increase the critical angle for total internal reflection, because the refractive index of ZnO (n=1.94) could be matched between GaN (n=2.5) and MgO (n=1.73). The MgO nano-pyramids structure and ZnO refractive-index modulation layer enhanced the light extraction efficiency ofV-LEDs with by 49%, comparing with the V-LEDs with a flat n-GaN surface. The angular-dependent emission intensity shows the enhanced light extraction through the side walls of V-LEDs as well as through the top surface of the n-GaN, because of the increase in critical angle for total internal reflection as well as light scattering at the MgO nano-pyramids surface.

  • PDF

Effect of Re and Ru Addition on the Solidification and Solute Redistribution Behaviors of Ni-Base Superalloys (니켈계 초내열합금의 응고 및 용질원소의 편석 거동에 미치는 레늄 및 루테늄 첨가의 영향)

  • Seo, Seong-Moon;Jeong, Hi-Won;Lee, Je-Hyun;Yoo, Young-Soo;Jo, Chang-Yong
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.11
    • /
    • pp.882-892
    • /
    • 2011
  • The influence of rhenium (Re) and ruthenium (Ru) addition on the solidification and solute redistribution behaviors in advanced experimental Ni-base superalloys has been investigated. A series of model alloys with different levels of Re and Ru were designed based on the composition of Ni-6Al-8Ta and were prepared by vacuum arc melting of pure metallic elements. In order to identify the influence of Re and Ru addition on the thermo-physical properties, differential scanning calorimetry analyses were carried out. The results showed that Re addition marginally increases the liquidus temperature of the alloy. However, the ${\gamma}^{\prime}$ solvus was significantly increased at a rate of $8.2^{\circ}C/wt.%$ by the addition of Re. Ru addition, on the other hand, displayed a much weaker effect on the thermo-physical properties or even no effect at all. The microsegregation behavior of solute elements was also quantitatively estimated by an electron probe microanalysis on a sample quenched during directional solidification of primary ${\gamma}$ with the planar solid/liquid interface. It was found that increasing the Re content gradually increases the microsegregation tendency of Re into the dendritic core and ${\gamma}^{\prime}$ forming elements, such as Al and Ta, into the interdendritic area. The strongest effect of Ru addition was found to be Re segregation. Increasing the Ru content up to 6 wt.% significantly alleviated the microsegregation of Re, which resulted in a decrease of Re accumulation in the dendritic core. The influence of Ru on the microstructural stability toward the topologically close-packed phase formation was discussed based on Scheil type calculations with experimentally determined microsegregation results.

Crystal Growth of $Y_3Al_5O_{12}$ and Nd : $Y_3Al_5O_{12}$ by Czochralski. Technique (융액인상법에 의한 $Y_3Al_5O_{12}$및 Nd : $Y_3Al_5O_{12}$ 단결정육성)

  • Yu, Yeong-Mun;Lee, Yeong-Guk;Park, Ro-Hak
    • Korean Journal of Crystallography
    • /
    • v.5 no.2
    • /
    • pp.51-66
    • /
    • 1994
  • Y3Al5O2 and Nd: Y3Al5012 single crystals were grown by Czochralskl technique. The effectt of pulling rate rotation rate, and doping level of Nd3+ ion on the crystal quality were studied Various types of defects were analysed by photo-elastic effect and chemical etching method Finally, spectroscopic and laser poputies of grown crystal were measured. Optirmum pulling rate for good quality was dependant on the doping level of Nd3+ ion. It was found that the suitable pulling rates for pure Y3Al5O12 for 3.0∼3.5 a/o Nd3+ ion doped Y3Al5012 and for more than 40 a/o Nd3+ ion doped Y3Al5012 were 2∼4mm/hr, 0.6∼0.5mm/hr, and less than 0.4mm/hr respectively. Solid-liquid interface was convex at the rotation rate of 27∼60rpm, and concave at the rotation rate of 80∼100rpm. Growth axis was confired to <111> direction and lattice parameter was measured to 12.017A. Core (211) facets,striations, inclusions of metal particles, dislocations and optical inhonngeneities were detected. Four level laser transition of Nd3+ion in YIAls012 single crystal were identified by the spectroscopic measurements. Laser rod with tam diameter and 63mm length was fabricated from grown Nd3+ Y3Al5012 sin91e crystals. 1.8lJ of lasing threshould and 0.49% of soope efficiency were measured by the Pulsed laser action.

  • PDF

Stability of the growth process at pulling large alkali halide single crystals

  • V.I. Goriletsky;S.K. Bondarenko;M.M. Smirnov;V.I. Sumin;K.V. Shakhova;V.S. Suzdal;V.A. Kuznetzov
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.1
    • /
    • pp.5-14
    • /
    • 2003
  • Principles of a novel pulse growing method are described. The method realized in the crystal growing on a seed from melts under raw melt feeding provided a more reliable control of the crystallization process when producing large alkali halide crystals. The slow natural convection of the melt in the crucible at a constant melt level is intensified by rotating the crucible, while the crystal rotation favors a more symmetrical distribution of thermal stresses over the crystal cross-section. Optimum rotation parameters for the crucible and crystal have been determined. The spatial position oi the solid/liquid phase interface relatively to the melt surface, heaters and the crucible elements are considered. Basing on that consideration, a novel criterion is stated, that is, the immersion extent of the crystallization front (CF) convex toward the melt. When the crystal grows at a <> CF immersion, the raised CF may tear off from the melt partially or completely due to its weight. This results in avoid formation in the crystal. Experimental data on the radial crystal growth speed are discussed. This speed defines the formation of a gas phase layer at the crystal surface. The layer thickness il a function of time a temperature at specific values of pressure in the furnace and the free melt surface dimensions in the gap between the crystal and crucible wall. Analytical expressions have been derived for the impurity component mass transfer at the steady-state growth stage describing two independent processes, the impurity mass transfer along the <> path and its transit along the <> one. The heater (and thus the melt) temperature variation is inherent in any control system. It has been shown that when random temperature changes occur causing its lowering at a rate exceeding $0.5^{\circ}C/min$, a kind of the CF decoration by foreign impurities or by gas bubbles takes place. Short-term temperature changes at one heater or both result in local (i.e., at the front) redistribution of the preset axial growth speed.

Effect of Lithium Ion Concentration on Electrochemical Properties of BF3LiMA-based Self-doping Gel Polymer Electrolytes (BF3LiMA기반 자기-도핑형 겔 고분자 전해질의 전기화학적 특성에 미치는 리튬이온 농도의 영향)

  • Kang, Wan-Chul;Ryu, Sang-Woog
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.3
    • /
    • pp.211-216
    • /
    • 2010
  • Boron trifluoride lithium methacrylate ($BF_3$LiMA)-based gel polymer electrolytes (GPEs) were synthesized with various $BF_3$LiMA concentration to elucidate the effect on ionic conductivity and electrochemical stability by a AC impedance and linear sweep voltammetry (LSV). As a result, the highest ionic conductivity reached $5.3{\times}10^{-4}Scm^{-1}$ at $25^{\circ}C$ was obtained for 4 wt% of $BF_3$LiMA. Furthermore, high electrochemical stability up to 4.3 V of the $BF_3$LiMA-based GPE was observed in LSV measurement since the counter anion was immobilized in this self-doped system. On the other hand, it was assumed that there was a rapid decomposition of electrolytes on a lithium metal electrode which results in a high solid electrolyte interface (SEI) resistance. However, a high stability toward graphite or lithium cobalt oxide (LCO) electrode thereby a low SEI resistance was observed from the AC impedance measurement as a function of storage time at $25^{\circ}C$. Consequently, the high ionic conductivity, good electrochemical stability and the good interfacial compatibility with graphite and LCO were achieved in $BF_3$LiMA-based GPE.

A Visualization Study of Liquid Spreading on Micro/nano Textured Surfaces with Synchrotron X-ray Imaging (방사광 X-선 영상법을 활용한 마이크로/나노 구조 표면에서의 액체 퍼짐 가시화 연구)

  • Kwak, Ho Jae;Yu, Dong In;Doh, Seungwoo;Park, Hyun Sun;Kim, Moo Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.8
    • /
    • pp.531-536
    • /
    • 2017
  • Nano/micro technology is currently applied to improve solid surface wettability, with recent research studies indicating that nanostructures can improve surface wettability in the hydrophilic direction, and liquid spreading (propagation) is generated by capillary wicking. The majority of the existing research involves qualitative analysis of the spreading phenomena, owing to the difficulty in conducting small-scale analysis (nanostructures). In this study, the droplet interfacial behavior on silicon surfaces with micro/nano/micro-nano structures is experimentally investigated. The interfacial behavior is directly visualized using synchrotron X-ray imaging (side view). The spreading phenomena occur on structured surfaces, and the liquid interface behaviors on the surfaces differ. The liquid film thickness is uniform during spreading on the microstructured surface, but not on the nano case which shows a gentle slope. These combined spreading shapes were observed on a micro-nano structured surface, and liquid propagation was enhanced when the micro- and nano-structures are combined.

Effects of Heat Treatment Conditions on the Interfacial Reactions and Crack Propagation Behaviors in Electroless Ni/electroplated Cr Coatings (열처리 조건에 따른 무전해 Ni/전해 Cr 이중도금의 계면반응 및 균열성장거동 분석)

  • Son, Kirak;Choi, Myung-Hee;Lee, Kyu Hawn;Byon, Eungsun;Rhee, Byong-Ho;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.3
    • /
    • pp.69-75
    • /
    • 2016
  • This study investigated the effect of heat treatment conditions not only on the Cr surface crack propagation behaviors but also on the Ni/Cr interfacial reaction characteristics in electroless Ni/electroplated Cr double coating layers on Cu substrate. Clear band layer of Ni-Cr solid solutions were developed at Ni/Cr interface after heat treatment at $750^{\circ}C$ for 6 h. Channeling cracks formed in Cr layer after 1 step heat treatment, that is, heat treatment after Ni/Cr plating, while little channeling cracks formed after 2 step heat treatment, that is, same heat treatments after Ni and Cr plating, respectively, due to residual stress relaxation due to crystallization of Ni layer before Cr plating.

Study on Adsorption Equilibrium, Kinetic and Thermodynamic Parameters of Murexide by Activated Carbon (입상 활성탄에 의한 Murexide의 흡착 평형, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.56-62
    • /
    • 2019
  • The equilibrium, kinetic and thermodynamic parameters of adsorption of murexide by granular activated carbon were investigated. The experiment was carried out by batch experiment with the variables of the amount of the adsorbent, the initial concentration of the dye, the contact time and the temperature. The isothermal adsorption equilibrium was best applied to the Freundlich equation in the range of 293 ~ 313 K. From the separation factor (${\beta}$) of Freundlich equation, it was found that adsorption of murexide by granular activated carbon could be the appropriate treatment method. The adsorption energy (E) obtained from the Dubinin- Radushkevich equation shows that the adsorption process is a physical adsorption process. From the kinetic analysis of the adsorption process, pseudo second order model is more consistent than pseudo first order model. It was found that the adsorption process proceeded to a spontaneous process and an endothermic process through Gibbs free energy change ($-0.1096{\sim}-10.5348kJ\;mol^{-1}$) and enthalpy change ($+151.29kJ\;mol^{-1}$). In addition, since the Gibbs free energy change decreased with increasing temperature, adsorption reaction of murexide by granular activated carbon increased spontaneously with increasing temperature. The entropy change ($147.62J\;mol^{-1}\;K^{-1}$) represented the increasing of randomness at the solid-solution interface during the adsorption reaction of murexide by activated carbon.

The effect of Dy2O3 addition on crystal structure, grain growth, and dielectric properties in BaTiO3 (BaTiO3에서 Dy2O3 첨가가 결정구조, 입자성장 및 유전특성에 미치는 영향)

  • Ahn, Won-Gi;Choi, Moonhee;Kim, Minkee;Moon, Kyoung-Seok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.4
    • /
    • pp.136-142
    • /
    • 2022
  • The crystal structure, grain growth behavior, and dielectric properties of BaTiO3 have been studied with the addition of Dy2O3. The powders were synthesized at ratios of (100-x)BaTiO3-xDy2O3 (mol%, x = 0, 0.5, 1.0, 2.0) by a conventional solid-state synthesis, and the powder compacts were sintered at 1250℃ for 2 hours in air. As the amount of added Dy2O3 was increased, the crystal structure of the sintered samples changed from a tetragonal to a pseudo-cubic structure, and the tetragonality decreased. In addition, a secondary phase of Ba12Dy4.67Ti8O35 appeared when Dy2O3 was added. The average grain size after sintering decreased and abnormal grains appeared as the amount of Dy2O3 increased. It can be explained that the grain growth behavior of the Dy2O3 added-BaTiO3 occurs due to the two-dimensional nucleation and growth, and is governed by the interface reaction. Further, the correlation between crystal structure, microstructure, and dielectric properties was discussed.