• 제목/요약/키워드: Solid to liquid ratio

검색결과 265건 처리시간 0.031초

Fractional Melting에 의한 Si 정련에 관한 연구 (Refining of Silicon by Fractional Melting Process)

  • 김귀욱;윤우영
    • 한국주조공학회지
    • /
    • 제17권6호
    • /
    • pp.598-607
    • /
    • 1997
  • Fractional melting process involves heating an alloy within its liquid-solid region simultaneously ejecting liquid from the solid-liquid mixture. The extent of the purification obtained is comparable to that obtained in multi-pass zone refining. The new fractional melting process in which centrifugal force was used for separating the liquid from the mixture has been developed and applied to the purification of the metallic grade. Refining ratio depends on partition ratio, cake wetness and diffusion in the solid, and it was controlled by various processing parameters such as rotating speed and heating rate. The new parameter called "refining partition coefficient" has been suggested to estimate the effects of processing variables on the refining ratio. Because major impurities in MG-silicon such as Fe, Al, Ni have a low segregation coefficient, good purification effect is expected. The results of refining MG-silicon(98%) showed that 3N-Si was obtained in refined solid of 50% of the original sample.

  • PDF

Optimization of Extraction Parameters for Keratinase Recovery from Fermented Feather under Solid State Fermentation by Streptomyces sp. NRC 13S

  • Shata, Hoda Mohamed Abdel Halim;Farid, Mohamed Abdel Fattah
    • Journal of Applied Biological Chemistry
    • /
    • 제55권3호
    • /
    • pp.149-156
    • /
    • 2012
  • The effects of solvent type and concentration, solid/liquid ratio, extraction time and repeated extraction on recovery of keratinase from solid-state fermentation (SSF) of chicken feather by a local Streptomyces sp. NRC 13S were investigated in order to establish the experimental conditions for keratinase yield. Among solvents tested, 0.5% (v/v) glycerol was the best. Box-Behnken design was used to investigate the effect of relevant variables on keratinase recovery. The factors investigated were solid/liquid ratio (1:1.66-1:6.66 g/mL), glycerol concentration (0.5-5% v/v) and repeated extraction (1-5 cycle). The results showed that the maximum recovery of keratinase (6933.3 U/gfs) was obtained using 0.5 (v/v) glycerol as extracting solvent, in a solid/liquid ratio of 1:5 and three extraction cycles.

Changes in Physical Properties Especially, Three Phases, Bulk Density, Porosity and Correlations under No-tillage Clay Loam Soil with Ridge Cultivation of Rain Proof Plastic House

  • Yang, Seung-Koo;Seo, Youn-Won;Kim, Sun-Kook;Kim, Byeong-Ho;Kim, Hee-Kwon;Kim, Hyun-Woo;Choi, Kyung-Ju;Han, Yeon Soo;Jung, Woo-Jin
    • 한국토양비료학회지
    • /
    • 제47권4호
    • /
    • pp.225-234
    • /
    • 2014
  • This study was carried out to investigate the sustainable agriculture of no-tillage technique including recycling of the ridge and the furrow of a field for following crops in Korea. No-tillage systems affect soil physical properties such as three phase (solid, liquid, and air phase) and distribution of soil granular. Solid ratio of subsoil in 3-year of no-tillage (NT) treatment was remarkably lower than that in conventional (CT, 2-year of no-tillage + 1-year of tillage) treatment, while air ratio of subsoil in NT remarkably increased. Bulk density of subsoil in NT remarkably decreased. Porosity of subsoil in NT remarkably increased. Deviation of air phase, bulk density, and porosity of top soil and subsoil in NT remarkably decreased in NT compared with CT. Solid phase ratio and liquid phase ratio in NT and CT had positive (+) correlation. Solid phase ratio and air phase ratio in NT and CT had negative (-) correlation, also liquid phase ratio and air ratio had negative (-) correlation. Bulk density and liquid ratio in soil had positive (+) correlation at top soil and subsoil in NT. Bulk density and air ratio in soil had negative (-) correlation in NT and CT. Porosity and liquid phase ratio had negative (-) correlation, r =1), the significant value was lower in NT than in CT. Porosity and air phase ratio had positive (+) correlation (r =1).

비점성 평면 정체 유동 응고 문제에 대한 점근적 해석 (An Asymptotic Analysis on the Inviscid Plane Stagnation-flow Solidification Problem)

  • 유주식;엄용균
    • 대한기계학회논문집B
    • /
    • 제24권6호
    • /
    • pp.792-801
    • /
    • 2000
  • The problem of phase change from liquid to solid in the inviscid plane-stagnation flow is theoretically investigated. The solution at the initial stage of freezing is obtained by expanding it in powers of time, and the final equilibrium state is determined from the steady-state governing equations. The transient solution is dependent on the three dimensionless parameters, but the equilibrium state is determined by one parameter of (temperature ratio/conductivity ratio). The effect of the fluid flow on the growth rate of the solid in the pure conduction problem can be clearly seen from the solution of the initial stage and the final equilibrium state. The characteristics of the transient heat transfer at the surface of the solid and the liquid side of the solid-liquid interface for all the dimensionless parameters are elucidated.

Treatment of High Concentration Organic Wastewater with a Sequencing Batch Reactor (SBR) Process Combined with Electro-flotation as a Solids-liquid Separation Method

  • Choi, Younggyun;Park, Minjeong;Park, Mincheol;Kim, Sunghong
    • Environmental Engineering Research
    • /
    • 제19권4호
    • /
    • pp.395-399
    • /
    • 2014
  • Operation characteristics of the sequencing batch reactor (SBR) process with electro-flotation (EF) as a solid liquid separation method (EF-SBR) were investigated. EF-SBR process showed excellent solid-liquid separation performance which enabled to separate biosolids from liquid phase within 30 min and to extend cyclic reaction time. Although influent organic loading rate was increased stepwise from 5 to 15 g COD/day, food to microorganisms (F/M) ratio could be maintained about 0.3 g COD/g VSS/day in EF-SBR because biomass concentration could be easily controlled at desired level by EF. However, it was impossible to increase biomass concentration at the same level in control SBR (C-SBR) process because solid-liquid separation by gravity settling showed a limitation at higher mixed liquor suspended solids (MLSS) concentration with 60 min of settling time. Total chemical oxygen demand (TCOD) removal efficiency of EF-SBR process was not decreased although influent organic loading rate became 3 times higher than initial value. However, it was seriously deteriorated in C-SBR process after increasing the rate over 10 g COD/day, which was accounted for insufficient organic removal by relatively higher food to microorganisms (F/M) ratio as well as biosolids wash-out by a limitation of gravity sedimentation.

종방향대류 및 고액밀도차가 고려된 접촉융해에 대한 해석해 (An analytical solution for the close-contact melting with vertical convection and solid-liquid density difference)

  • 유호선;홍희기;김찬중
    • 대한기계학회논문집B
    • /
    • 제21권9호
    • /
    • pp.1165-1173
    • /
    • 1997
  • The steady state close-contact melting phenomenon occurring between a phase change material and an isothermally heated flat plate with relative motion is investigated analytically, in which the effects of vertical convection in the liquid film and solid-liquid density difference are incorporated simultaneously. Not only the scale analysis is conducted to estimate a priori qualitative dependence of system variables on characteristic parameters, but also an analytical solution to a set of simplified model equations is obtained to specify the effects under consideration. These two results are consistent with each other, in that the vertical convection affects both the solid descending velocity and the film thickness, and that the density difference alters only the solid descending velocity. While the effect of vertical convection can be characterized conveniently by a newly introduced temperature gradient factor which asymptotically approaches the unity/zero with decreasing/increasing the Stefan number, that of density difference is represented by the liquid-to-solid density ratio. It is shown that the solid descending velocity depends linearly on the density ratio, and that the ratios of solid descending velocity, film thickness and friction coefficient to the conduction solution are proportional to 3/4, 1/4 and -1/4 powers of the temperature gradient factor, respectively. Also, established is the fact that the effect of convection can be legitimately neglected in the analysis for the range of the Stefan number less than 0.1.

Liquid crystal-surface interactions studied by light scattering

  • Copic, Martin;Vilfan, Mojca
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1711-1714
    • /
    • 2006
  • Anchoring energy of liquid crystals on solid substrates is a key parameter in liquid crystal technology. A nonperturbative method of its measurement by dynamic light scattering on thermal orientational fluctuations is presented, The ratio of the zenithal and azimuthal anchoring coefficients is shown to be equal to the ratio of the orientational elastic constants.

  • PDF

비점성 정체 유동 하에서의 응고와 열전달 (Heat Transfer and Solidification in the Inviscid Stagnation Flow)

  • 유주식;김용진
    • 한국전산유체공학회지
    • /
    • 제5권1호
    • /
    • pp.27-32
    • /
    • 2000
  • This study investigates the problem of phase change from liquid to solid in the inviscid stagnation flow. The instantaneous location of the solid-liquid interface is fixed for all times by a coordinate transformation. Finite difference method is used to obtain the solution of the unsteady problem, and the growth rate of solid and the transient heat transfer from the surfaces of solid are investigated. The transient solution is dependent on the three dimensionless parameters, but the final steady state is determined by only one parameter of temperature ratio/conductivity ratio. It is observed that the instantaneous heat flux at the surface of solid can be obtained with sufficient accuracy by measuring the thickness of the solid or vice versa.

  • PDF

등온가열에 의한 접촉융해의 초기 과도과정에 대한 근사적 해석해 (An approximate analytical solution for the initial transient process of close-contact melting on an isothermal surface)

  • 유호선
    • 대한기계학회논문집B
    • /
    • 제21권12호
    • /
    • pp.1710-1719
    • /
    • 1997
  • An approximate analytical solution for the initial transient process of close-contact melting occurring between a phase change material kept at its melting temperature and an isothermally heated flat surface is derived. The model is so developed that it can cover both rectangular and circular cross-sectional solid blocks. Normalization of simplified model equations in reference to the steady solution enables the solution to be expressed in a generalized form depending on the liquid-to-solid density ratio only. A selected result shows an excellent agreement with the previously reported numerical data, which justifies the present approach. The solution appears to be capable of describing all the fundamental characteristics of the transient process. In particular, dependence of the solid descending velocity oft the density ratio at the early stage of melting is successfully resolved. The effects of other parameters except the density ratio on the transient behaviors are efficiently represented via the steady solution implied in the normalized result. A simple approximate method for estimating the effect of convection on heat transfer across the liquid film is also proposed.

Design and Exergy Analysis for a Combined Cycle of Liquid/Solid $CO_2$ Production and Gas Turbine using LNG Cold/Hot Energy

  • Lee, Geun-Sik
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제15권1호
    • /
    • pp.34-45
    • /
    • 2007
  • In order to reduce the compression power and to use the overall energy contained in LNG effectively, a combined cycle is devised and simulated. The combined cycle is composed of two cycles; one is an open cycle of liquid/solid carbon dioxide production cycle utilizing LNG cold energy in $CO_2$ condenser and the other is a closed cycle gas turbine which supplies power to the $CO_2$ cycle, utilizes LNG cold energy for lowering the compressor inlet temperature, and uses the heating value of LNG at the burner. The power consumed for the $CO_2$ cycle is investigated in terms of a solid $CO_2$ production ratio. The present study shows that much reduction in both $CO_2$ compression power (only 35% of the power used in conventional dry ice production cycle) and $CO_2$ condenser pressure could be achieved by utilizing LNG cold energy and that high cycle efficiency (55.3% at maximum power condition) in the gas turbine could be accomplished with the adoption of compressor inlet cooling and regenerator. Exergy analysis shows that irreversibility in the combined cycle increases linearly as a solid $CO_2$ production ratio increases and most of the irreversibility occurs in the condenser and the heat exchanger for compressor inlet cooling. Hence, incoming LNG cold energy to the above components should be used more effectively.