• Title/Summary/Keyword: Solid oxide cells

Search Result 329, Processing Time 0.025 seconds

The Electrical Properties of Sputtered GDC Thim Film for Solid Oxide Fuel Cells (고체산화물 연료전지 박막의 전기적 특성 연구)

  • Lee, Ki-Seong;Lee, Jai-Moon;Shim, Su-Man;Kim, Dong-Min
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.3
    • /
    • pp.319-325
    • /
    • 2011
  • The electrical properties of sputtered GDC thin films on $Al_2O_3$ substrates was studied. The electrical properties of the films were measured to evaluate the ion conductivity of GDC thin films for co-planar SOFC electrolytes. The impedance of the GDC thin films on $Al_2O_3$ substrates was affected by the film thickness and the impedance of thin film exhibited higher value than thick films. Similarly, the conductivity of the thick film showed much higher value than thin films. It indicated that the film thickness is the main factor affecting the conductivity and impedance of the GDC electrolyte for the co-planar SOFC.

Microwave Sintering of Gd-Doped CeO2 Powder (Gd-Doped CeO2 분말의 마이크로파 소결)

  • Kim, Young-Goun;Kim, Seuk-Buom
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.3 s.298
    • /
    • pp.182-187
    • /
    • 2007
  • 10 mol% $Gd_{2}O_{3}-CeO_{2}$ powder was sintered by microwave in a 2.45 GHz multimode cavity to develop a dense electrolyte layer for intermediate temperature solid oxide fuel cells (IT-SOFCs). Samples were sintered from $1100^{\circ}C$ upto $1500^{\circ}C$ by $50^{\circ}C$ difference and kept for 10 min and 30 min at the maximum temperature respectively. Theoretical density of the sample sintered at $1200^{\circ}C$ for 10 min was 95.4% and increased gradually upto 99% in the sample sintered at $1500^{\circ}C$ for 30 min. All of sintered samples showed very fine microstructures and the maximum average grain size of the sintered sample at $1500^{\circ}C$ for 30 min was $(0.87{\pm}0.42){\mu}m$. Ionic conductvity of the samples were measured by DC 4 probe method.

Preparation of NiO/YSZ Ultra-Fine Powder Composites Using Self-Sustaining Combustion Process (Self-Sustaining Combustion Process를 이용한 NiO/YSZ 초미세 복합분말 제조)

  • 김선재;정충환;김경호;김영석;국일현
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.4
    • /
    • pp.411-417
    • /
    • 1996
  • Ultrafine NiO/YSZ (Yttria Stabilized Zirconia) powders were made by using a glycine nitrate process which is used as anode material for solid oxide fuel cells. The specific surface areas of synthesized NiO/YSZ powders were examined with controlling pH of a precursor solution and the content of glycine. The binding of glycine with metal nitrates occurring in the precursor solution was analyzed by using FTIR. The characteristics of synthesized powders were examined with X-ray diffraction(XRD) Brunauer Emmett Teller with N2 absorption. scanning electron microscopy (SEM). and transmission electron microscopy (TEM). Ultrafine NiO/YSZ powders of 15-18 m2/g were obtained through GNP when the content of glycine was controlled to 1 or 2 times the stoichiometric ratio in the precursor solutions. Strongly acid precursor solution increased the specific surface area of the synthesized powders. This is suggested to be the increased binding of metal nitrates and glycine under a strong acid solution of pH=0.5 that lets glycine consist of mainly the amine group of {{{{ { NH}`_{3 } ^{+ } }}. After sintering and reducing treatment of NiO/YSZ powders synthesized by GNP the Ni/YSZ pellet showed ideal microstructure where very fine Ni particles of 3-5 ${\mu}{\textrm}{m}$ were distributed uniformly and fine pore around Ni metal particles was formed. leading to anincrease of the triple phase boundary among gas Ni and YSZ.

  • PDF

Effect of CeO2 Coating on the Grain Growth of Cu Particles (CeO2 코팅을 통한 Cu 입자의 입성장 억제 효과에 관한 연구)

  • Yoo Hee-Jun;Moon Ji-Woong;Oh You Keun;Moon Jooho;Hwang Hae Jin
    • Journal of Powder Materials
    • /
    • v.12 no.6 s.53
    • /
    • pp.413-421
    • /
    • 2005
  • Copper is able to work as a current collector under wide range of hydrocarbon fuels without coking in Solid oxide fuel cells (SOFCs). The application of copper in SOFC is limited due to its low melting point, which result in coarsening the copper particle. This work focuses on the sintering of copper powder with ceria coating layer. Ceria-coated powder was prepared by thermal decomposition of urea in $Ce(NO_3)_3\cdot6H_2O$ solution, which containing CuO core particles. The ceria-coated powder was characterized by XRD, ICP, and SEM. The thermal stability of the ceria-coated copper in fuel atmosphere $(H_2)$ was observed by SEM. It was found that the ceria coating layer could effectively hinder the grain growth of the copper particles.

Development of $YSZ/La_0.85S_r0.15MnO_3$ Composite Electrodes for Solid Oxide Fuel Cells (고체산화물 연료전지용 $YSZ/La_0.85S_r0.15MnO_3$계 복합전극의 개발)

  • 윤성필;현상훈;김승구;남석우;홍성안
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.9
    • /
    • pp.982-990
    • /
    • 1999
  • YSZ/LSM composite cathode was fabricated by dip-coating of YSZ sol on the internal pore surface of a LSM cathode followed by sintering at low temperature (800-100$0^{\circ}C$) The YSZ coating significantly increased the TPB(Triple Phase Boundary) where the gas the electrode and the electrolyte were in contact with each other. Sinter the formation of resistive materials such as La2Zr2O7 or SrZrO3 was prevented due to the low processing temperature and TPB was increased due to the YSZ film coating the electrode resistance (Rel) was reduced about 100 times compared to non-modified cathode. From the analysis of a.c impedance it was shown that microstructural change of the cathode caused by YSZ film coating affected the oxygen reduction reaction. In the case of non-modified cathode the RDS (rate determining step) was electrode reactions rather than mass transfer or the oxygen gas diffusion in the experimental conditions employed in this study ($600^{\circ}C$-100$0^{\circ}C$ and 0,01-1 atm of Po2) for the YSZ film coated cathode however the RDS involved the oxygen diffusion through micropores of YSZ film at high temperature of 950-100$0^{\circ}C$ and low oxygen partial pressure of 0.01-0.03 atm.

  • PDF

Improvement of Open Circuit Voltage (OCV) depending on Thickness of GDC Electrolyte of LT-SOFCs (저온형 SOFC용 GDC 전해질 두께에 따른 Open Circuit Voltage 향상)

  • Ko, Hyun-Jun;Lee, Jong-Jin;Hyun, Sang-Hoon
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.195-198
    • /
    • 2010
  • It has been considered to apply GDC ($Gd_{0.1}Ce_{0.9}O_{1-X}$) for low-temperature SOFC electrolytes because it has higher ionic conductivity than YSZ at low temperature. However, open circuit voltage with using GDC ($Gd_{0.1}Ce_{0.9}O_{1-X}$) electrolyte in SOFCs, becomes lower than using YSZ (8 mol% Yttria stabilized Zirconia) electrolyte because GDC has electronic conductivity. In this work, the effect of changing GDC electrolyte thickness on the open circuit voltage has been investigated. Ni-GDC anode-supported unit cells were fabricated as follows. Mixed NiO-GDC powders were pressed and pre-sintered at $1200^{\circ}C$. And then, GDC electrolyte material was dip-coated on the anode and sintered at $1400^{\circ}C$. Finally the LSCF-GDC cathode material was screen-printed on the electrolyte and sintered at $1000^{\circ}C$. Electrolyte thickness was controlled by the number of dip-coating times. Open circuit voltage was measured depending on electrolyte thickness at $650^{\circ}C$ and found that the thicker GDC electrolyte was, the better OCV was.

A Study on Thermal Cycle Characteristics of Solid Oxide Fuel Cell (고체 산화물 연료전지의 열사이클 따른 성능 열화 특성 연구)

  • Kim, Eung-Yong;Song, Rak-Hyun;Jeon, Kwang-Sun;Shin, Dong-Ryul;Kang, Thae-Khapp
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1312-1314
    • /
    • 1998
  • SOFC system is often subject to thermal cycle condition during normal start/stop, shutdown, and emergence state. Under the thermal cycle condition of heating and cooling, the SOFC components expand or shrink, which produces thermal stress and thermal shock. The SOFC performance is degraded by the thermal factors. To protect SOFC system from the thermal degradation, the optimum thermal condition must be clarified. In this study, to examine the thermal cycle characteristics, we fabricated single cells of planar SOFC with an area of $5{\times}5cm$. The electrolyte and PEN were tested under thermal cycle conditions in the range of$ 2-8^{\circ}C/min$. After thermal cycle test. crack creation of the components were examined using ultraviolet apparatus. No crack in the electrolyte and PEN were observed. The single cell system with alumina frame were also tested under thermal cycle conditions of 2, 3, $4^{\circ}C/min$. The single cell was fractured at the thermal cycle of 3 and $4^{\circ}C/min$ and the optimum condition of the thermal cycle to be found below $2^{\circ}C/min$.

  • PDF

Sulfur Tolerance Effects on Sr0.92Y0.08Ti0.5Fe0.5O3-δ as an Alternative Anode in Solid Oxide Fuel Cells

  • Kim, Jun Ho;Yun, Jeong Woo
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.133-140
    • /
    • 2018
  • $Sr_{0.92}Y_{0.08}Ti_{0.5}Fe_{0.5}O_{3-{\delta}}$ (SYTF0.5) is investigated as an alternative anode in $H_2$ fuels containing $H_2S$ (0-200 ppm). Although additional ionic conductivity is introduced by aliovalent substitution of $Ti^{4+}$ by $Fe^{3+}$ in the B-site, the SYTF0.5 has lower electrical conductivity than that of the $Sr_{0.92}Y_{0.08}TiO_{3-{\delta}}$. Due to the mixed ionic and electronic conductive (MIEC) property exhibited in the SYTF0.5 anode, the electrochemical performance of the SYTF0.5 anode is improved, as well as the sulfur tolerance. The maximum power densities in $H_2$ at $900^{\circ}C$ for the SYT anode and the SYTF0.5 anode were 56.9 and $98.6mW/cm^2$, respectively. The maximum power density in the SYTF0.5 anode at 200 ppm of $H_2S$ concentration decreased by only 12.9% (86.3 to $75.2mW/cm^2$).

The Role of Metal Catalyst on Water Permeation and Stability of BaCe0.8Y0.2O3-δ

  • Al, S.;Zhang, G.
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.212-219
    • /
    • 2018
  • Perovskite type ceramic membranes which exhibit dual ion conduction (proton and oxygen ion conduction) can permeate water and can aid solving operational problems such as temperature gradient and carbon deposition associated with a working solid oxide fuel cell. From this point of view, it is crucial to reveal water transport mechanism and especially the nature of the surface sites that is necessary for water incorporation and evolution. $BaCe_{0.8}Y_{0.2}O_{3-{\alpha}}$ (BCY20) was used as a model proton and oxygen ion conducting membrane in this work. Four different catalytically modified membrane configurations were used for the investigations and water flux was measured as a function of temperature. In addition, CO was introduced to the permeate side in order to test the stability of membrane against water and $CO/CO_2$ and post operation analysis of used membranes were carried out. The results revealed that water incorporation occurs on any exposed electrolyte surface. However, the magnitude of water permeation changes depending on which membrane surface is catalytically modified. The platinum increases the water flux on the feed side whilst it decreases the flux on the permeate side. Water flux measurements suggest that platinum can block water permeation on the permeate side by reducing the access to the lattice oxygen in the surface layer.

Preparation of 20mol% Gd-doped $CeO_2$ Electrolyte for the Low-Temperature Solid Oxide Fuel Cells (저온형 고체산화물 연료전지를 위한 20mo1% Gd-doped $CeO_2$ 전해질의 제조에 관한 연구)

  • Kim, Sun-Jae;Hwang, Jong-Sun
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.305-307
    • /
    • 1997
  • Gd-doped $CeO_2$, ultrafine powders were synthesized by the glycine-nitrate process and then their sintering and electrical characteristics were analysed using the dilatometric and AC impedance measurements. In the dilatometric measurements green bodies from the synthesized powders after milling shrinked to about $1470^{\circ}C$ in appearance and then expanded thermally with the increase of the heating temperature, whereas those from the synthesized powders before milling continuously shrinked to the temperatures of $1600^{\circ}C$. It may be due to the change of the packing density of the synthesized powders by milling. In the AC impedance measurements, the electrical resistivity of the Gd-doped $CeO_2$ bodies from the as-milled powders, sintered at $1500^{\circ}C$ with the increase of the sintering time, showed the minimum value at the sintering time of 10h. The minimum total resistivity of the Gd-doped $CeO_2$ bodies sintered at $1500^{\circ}C$ for 10h seems to result from the lowest activation energy by the combination between the activation energies for the resistivities at the grain interior and grain boundary.

  • PDF