• Title/Summary/Keyword: Solid lubrication

Search Result 106, Processing Time 0.03 seconds

A Characteristic Study of Efficiency in Radial Piston Pump (래이디얼 피스톤 펌프의 효율 특성 연구)

  • 장윤석;천세민;임윤철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.106-113
    • /
    • 2000
  • A pump which is a fundamental device in a hydraulic system affects on overall system performance to a great deal. Such problems as leakage and solid friction loss become important in field applications, especially for the case of operation under high pressure and at high speed. So the research on this kind of subjects is necessary to improve the performance of hydraulic devices. A high pressure radial piston pump is analyzed here, which has a stationary cylinder block. It pumps hydraulic fluid by letting camring push a piston in a cylinder. Fluid leaks between the piston and cylinder so that it deteriorates the pump efficiency. Furthermore, the piston happens to touch the cylinder wall to increase the friction loss and wear. In this research, by means of FDM, volumetric, mechanical and overall efficiencies are observed by varying several design Parameters and operation conditions. Design values or their trends are presented to improve these efficiencies.

  • PDF

Effect of Different Solid Lubricants in the Automotive Friction Material on Friction Characteristics (자동차용 마찰재에 사용되는 고체 윤활제에 따른 제동특성에 관한 연구)

  • Lee, Jung-Joo;Jang, Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.328-334
    • /
    • 1998
  • In this work, friction materials with three different formulations containing different amounts of the solid lubricants were investigated to study the role of lubricants on the friction performance. The three friction materials contained graphite 10 vol. %, graphite 7 vol. % + MoS$_2$ 3 vol.%, and graphite 7 vol. % + $Sb_2S_3$ 3 vol. %, respectively, with the same amount of other ingredients. Results of this work showed that each formulation with different lubricants had unique advantages and disadvantages. The friction materials containing graphite 7 vol. % + MoS$_2$ 3 vol. % and graphite 7 % + $Sb_2S_3$ 3 vol. % showed better resistance to fading and improved friction stability compare to the friction materials containing graphite only as a lubricant. However, the friction materials with two lubricants (graphite + MoS$_2$ or $Sb_2S_3$) showed disadvantages on stick-slip phenomena, amplitude of torque, and rotor wear.

  • PDF

Analysis and Measurement of Rough Surface Temperature Rise in Lubricated Condition (거친 표면의 마찰온도 해석 및 온도측정 실험에 관한 연구)

  • Lee, Sang-Don;Cho, Yong-Joo
    • Tribology and Lubricants
    • /
    • v.23 no.2
    • /
    • pp.56-60
    • /
    • 2007
  • The main object of this study is to compare the results that have been concluded by the experiment and to estimate the temperature rise that can cause the contacting surface to be damaged. The former studies are based on the Blok and Jaeger formula. By these formulas we assume that two of the contacted objects are a kind of semi-infinite solid and with this assumption we can make a temperature analysis. But this method doesn't consider lubrication conditions and the calculation time requires a lot of time in that we have to face many difficulties in measuring the actual temperature rise. In this study we combines the semi-infinite solid method and the finite volume method to analyze the temperature of the contacting surface. And we measure temperature rise of the contact surface by dynamic thermocouple.

An Experimental Study on Friction and Wear of Solid Lubricating MoS$_{2}$ Bonded Films at a Block-on-Ring Typed Tribo-tester (미끄럼 운동을 하는 Block-on-Ring 접촉형태에서의 접착형 MoS$_{2}$ 고체윤활 피막의 마찰 마모 특성)

  • 한흥구;공호성;윤의성;권오관
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.04b
    • /
    • pp.35-40
    • /
    • 1996
  • Friction and wear behavior of MoS$_{2}$ bonded films were evaluated at a Block-on-Ring typed tribo-tester, and their properties were compared with those of Falex tester in terms of the wear life of the films. Test results showed that friction and wear properties were significantly affected by the test methods of different contact configuration, and the wear life at a Block-on-Ring type tribo-tester was mostly governed by the resin binder. To obtain long wear life of the films, various combinations of solid-resin-content ratio and chemical resin modification were attempted and evaluated. Adhesion properties of resin binders were also measured and compared by using a scratch tester.

  • PDF

Research Trend in Solid Lubricant Layered Materials for the High Performance Li-ion Batteries (층상구조 재료의 고체윤활작용을 이용한 고성능 리튬이온 전지 응용 연구동향)

  • Hur, Jaehyun
    • Prospectives of Industrial Chemistry
    • /
    • v.23 no.5
    • /
    • pp.12-20
    • /
    • 2020
  • 최근 층상구조를 가진 전이금속 칼코겐 화합물이 새로운 고성능 리튬이온전지 음극소재로서 주목받고 있다. 층상구조 물질들의 고성능 전극 소재 활용에 있어 박리를 이용한 정확한 층의 개수 조절은 전기화학 반응성을 증가시키고, 전극 필름 내에서의 균일한 거동을 위해서 매우 중요하다. 볼 밀링 공정은 이차전지 전극 소재 제조에 있어서 주로 물질의 분쇄나 고상 화학반응을 유도하여 합금 형태의 전극 소재 개발에 보편적으로 사용되는 공정이나, 층상구조를 가진 전이금속 칼코겐 화합물에 적용하면 층상구조 물질에 고체윤활작용을 일으켜 박리가 촉진된다. 이러한 성질을 이용하여 다양한 종류의 전이금속 칼코겐 화합물(예: MoS2, MoSe2, NbSe2)에 적절한 카본 매트릭스 물질과 복합화를 통해 새로운 전극 소재를 합성하고, 이를 통해 고성능 리튬이온전지 음극 소재를 제조하는 연구 동향에 대해 보고하고자 한다.

Tribological Behaviour of $WS_2$Solid Lubricant ($WS_2$ 고체윤활제의 마찰.마모 거동)

  • 신동우;김인섭;윤대현;김경도;김성진;정진수
    • Tribology and Lubricants
    • /
    • v.14 no.2
    • /
    • pp.35-41
    • /
    • 1998
  • The $WS_2$ solid lubricant synthesized through the vapour phase transport method was coated on the commercial bearing steel (SUJ 2) substrate, and the tribological behaviour of the lubricant was investigated using a ball-on-disk type tester. The $WS_2$ powder was spray-coated at room temperature using compressed air, and the change of friction coefficient was examined in various conditions, i.e., specimen configuration, atmosphere (air and nitrogen), applied load and rotating speed. $WS_2$ coated ball and disk showed the optimum friction coefficient of 0.07 and wear life of 45,000 cycles in the nitrogen atmosphere under 0.3 kgf and 100 rpm, whereas relatively high coefficient of 0.13 and reduced wear life of 4,000 cycles were observed in air atmosphere. The effect of rotating speed on the friction coefficient was not observed both in nitrogen and in air atmospheres. This confirmed that the spray-coated $WS_2$ solid lubricant was effective in reducing the friction coefficient and improving wear life in nitrogen atmosphere, and the oxygen and moisture existing in air could seriously deteriorate the lubrication effect of $WS_2$ coating layer.

Solid Lubrication Characteristics of DLC Coated Alumina Seals in High Temperature

  • Ok, Chul-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.356-356
    • /
    • 2007
  • Plasma immersion ion beam deposition (PIIBD) technique is a cost-effective process for the deposition of diamond like carbon thin film, the possible solid lubricant on large surface and a complex shape. We used PIIB process for the preparation of DLC thin film on $Al_2O_3$ with deposition conditions of deposition temperature range $200^{\circ}C$, working gas pressure of 1.310-1Pa. DLC thin films were coated by $C_2H_2$ ion beam deposition on $Al_2O_3$ after the ion bombardment of SiH4 as the bonding layer. Energetic bombardment of $C_2H_2$ ions during the DLC deposition to ceramic materials generated mixed layers at the DLC-Si interface which enhanced the interface to be highly bonded. Wear test showed that the low coefficient of friction of around 0.05 with normal load 2.9N and proved the advantage of the low energy ion bombardment in PIIBD process which improved the tribological properties of DLC thin film coated alumina ceramic. Furthermore, PIIBD was recognized as a useful surface modification technique for the deposition of DLC thin film on the irregular shape components, such as molds, and for the improvement of wear and adhesion problems of the DLC thin film, high temperature solid lubricant.

  • PDF

Detecting of Scuffing Faliure using Acoustic Emission (AE센서를 이용한 스커핑 손상의 감시)

  • Kim, Jae-Hwan;Kim, Tae-Wan;Cho, Yong-Joo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.34-39
    • /
    • 2002
  • The surfaces of machine components in sliding contact such as bearing, gears and pistons etc. frequently operate under the condition of mixed lubrication due to high load, high speed and slip. These machine components often undergo the inception of scuffing in practical application. The scuffing failure is a critical problem in modern machine components, especially for the requirement of high efficiency and small size. However, it is difficult to find a universal mechanism to explain all scuffing phenomena because there are so many factors affecting the onset of scuffing. In this study, scuffing experiments are conducted using Acoustic Emission(AE) measurement by an indirect sensing approach to detect scuffing failure. Acoustic Emission(AE) signal has been widely utilized to monitor the interaction at the friction interface. Using AE signals we can get an indication about the state of the friction processes, about the quality of solid and liquid layers eon the contacting surfaces in real time. The FFT(Fast Fourier Transform)analyses of the AE signal are used to understand the interfacial interaction and the relationship between the AE signal and the state of contact is presented

  • PDF

An Experimental Study on the Power Transmission Efficiency and Frictional Noise of $MoS_2$-Bonded-Film Coated Reduction Gears (접착형 $MoS_2$고체윤활피막이 코팅된 감속기의 동력전달효율과 소음 특성에 관한 실험적 고찰)

  • 윤의성;공호성;한홍구;오재응
    • Tribology and Lubricants
    • /
    • v.12 no.3
    • /
    • pp.107-114
    • /
    • 1996
  • MoS$_{2}$ bonded film was applied to reduction gears, and its lubricating properties were experimentally evaluated in terms of the power transmission efficiency and the frictional noise with a dynamo-typed gear test rig. Tests were performed in both oil lubrication and dry condition where the rotating velocity and loading torque were varied. In dry condition, MoS$_{2}$ bonded films effected the power transmission efficiency to increase about 5%, and the frictional noise level to decrease about 6 dB under the test operating conditions. It well proved that MoS$_{2}$ bonded films were a very effective solid lubricant for reduction gears. In oil lubricating conditions, the frictional properties of the coated gears were mainly governed by the lubricating oil, and lubricating effects of MoS2 bonded films were not evident. The result suggested that lubricating effect of MoS$_{2}$ bonded films would be limited to prevent a damage of reduction gears in the initial run when they were used in oil lubrication conditions.

A Study on the Wear Characteristics of Bearing According to its Material in Scroll Compressor (스크롤 압축기의 크랭크 샤프트의 베어링 재질에 따른 마모특성에 관한 실험적 연구)

  • Sung, Chi-Un;Park, Young-Do;Hwang, Yu-Jin;Back, Gee-Dae;An, Sung-Young;Lee, Jae-Keun
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.194-202
    • /
    • 2008
  • In this study, we investigated the tribology behaviour of two different bearing materials. One of these alloys content is Cu(90)-Sn(10) alloy and is widely used in the automotive industry.The other is Al alloy. This bearing content is Al-Sn-Si-Cu. Therefore, it is required to study on the lublicating characteristics of bearing according to different materials. In this study, compressor bearings made by respectively "PTFE solid lubricant" and "AI alloy with superior load carrying capacity, rubbing and impact endurance", have gone through journal bearing test. Lubrication and abrasion characteristics are evaluated by analyzing the material characteristics of a scroll compressor bearing bush. The AI alloy bearing showed the most excellent lubrication and abrasion characteristics than Cu-Sn alloy under high load condition.

  • PDF