• Title/Summary/Keyword: Solid lubricant

Search Result 112, Processing Time 0.025 seconds

De-icing of the hydrophobic treated nanoporous anodic aluminum oxide layer (소수성 처리된 나노다공성 알루미늄 양극산화피막의 제빙)

  • Shin, Yeji;Kim, Jinhui;Shin, Dongmin;Moon, Hyung-Seok;Lee, Junghoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.5
    • /
    • pp.222-229
    • /
    • 2021
  • Icing causes various serious problems, where water vapor or water droplets adhere at cold conditions. Therefore, understanding of ice adhesion on solid surface and technology to reduce de-icing force are essential for surface finishing of metallic materials used in extreme environments and aircrafts. In this study, we controlled wettability of aluminum alloy using anodic oxidation, hydrophobic coating and lubricant-impregnation. In addition, surface porosity of anodized oxide layer was controlled to realize superhydrophilicity and superhydrophobicity. Then, de-icing force on these surfaces with a wide range of wettability and mobility of water was measured. The results show that the enhanced wettability of hydrophilic surface causes strong adhesion of ice. The hydrophobic coating on the nanoporous anodic oxide layer reduces the adhesion of ice, but the volume expansion of water during the freezing diminishes the effect. The lubricant-impregnated surface shows an extremely low adhesion of ice, since the lubricant inhibits the direct contact between ice and solid surface.

Technologies for Small Form Factor Optical Disks (초소형 디스크 요소기술)

  • Kim Jin-Hong;Kim Jong-Hwan
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.113-118
    • /
    • 2005
  • Small form factor optical disks for near-field optics using solid immersion lens were developed. Disk durability properties in terms of head-disk interface (HDI) properties were investigated by drag test, diamond like carbon film and lubricant film were coated on the small form factor disk to enhance HDI. Disks with glass substrates and lubricant films after heat treatment showed more durable characteristics. Coverlayers made of UV resin were uniformly coated by spin coating In which the ski-jump could not be formed by adopting outer ring technique.

  • PDF

Technologies for Small Form Factor Optical Disks (초소형 디스크 요소기술)

  • Kim, Jin-Hong
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.1
    • /
    • pp.26-31
    • /
    • 2006
  • Small form factor optical disks for near-field optics using solid immersion lens were developed. Diamond like carbon film and lubricant film were coated on the small form factor optical disk to enhance the head-disk interface(HDI) characteristics. The disk durability properties in terms of HDI phenomena were investigated by drag test. Disks with glass substrates and the lubricant films experienced heat treatment showed more durable characteristics. Coverlayers made of UV resin were uniformly coated by spin coating in which the ski-jump could be removed by adopting outer ring technique

  • PDF

Study on Boundary Lubrication in the Sliding Bearing System under High Load and Speed (고하중과 고속 미끄럼 베어링 시스템의 경계윤활에 대한 연구)

  • 장시열
    • Tribology and Lubricants
    • /
    • v.15 no.3
    • /
    • pp.248-256
    • /
    • 1999
  • Many tribological components in automobile engine undergo high load and sliding speed with thin film thickness. The lubrication characteristics of the components are regarded as ether hydrodynamic lubrication or boundary lubrication, whereas in a working cycle they actually have both characteristics. Many modem engine lubricants have various additives for better performance which make boundary film formation even under hydrodynamic lubrication regime. Conventional Reynolds equation with the viewpoints of continuum mechanics concerns only bulk viscosity of lubricant, which means that its simulation does not give insights on boundary lubrication characteristics. However, many additives of modern engine lubricant provide mixed modes of boundary lubrication characteristics and hydrodynamic lubrication. Especially, high molecular weight polymeric viscosity index improvers form boundary film on the solid surface and cause non-Newtonian fluid effect of shear thinning. This study has performed the investigation about journal bearing system with the mixed concepts of boundary lubrication and hydrodynamic lubrication which happen concurrently in many engine components under the condition of viscosity index improver added.

A Study On The Influence of Atmospheres in Frictional Machining (摩찰加工 에 있어서의 분위기 영향 에 관한 硏究 제3보)

  • 손명환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.6 no.3
    • /
    • pp.261-270
    • /
    • 1982
  • In the previously reported Part I and Part II, the experimental results in the frictional machining under liquid atmospheres to obtain the best surface roughness were showed. In the present study the frictional machining was carried out in gas atmospheres such as air, oxygen, dioxide carbon and argon, and in solid lubricant atmosphere of graphite powder. The results were compared with those of Part I and Part II. The material to be tested and machining conditions were made identical with Part I and Part II. The best surface roughness obtained in the above gas and solid lubricant atmospheres was worse than the liquid atmospheres but the contact pressure to minimize the surface roughness was considerably low. The best surface roughness in the present study was obtained in the atmospheres of dioxide carbon and graphite powder and the worst one was in oxygen and argon gas.

A Study on Tribological Properties of Diamond-like Carbon Thin Film for the Application to Solid Lubricant of MEMS Devices (MEMS 소자의 고체윤활박막으로 활용하기 위한 다이아몬드상 카본 박막의 트라이볼로지 특성 분석)

  • Choi, Won-Seok;Hong, Byung-You
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.11
    • /
    • pp.1010-1013
    • /
    • 2006
  • Hydrogenated Diamond-like carbon (DLC) films were Prepared by the radio frequency plasma enhanced chemical vapor deposition (RF PECVD) method on silicon substrates using methane $(CH_4)$ and hydrogen $(H_2)$ gas for the application to solid lubricant of MEMS devices. We have checked the influence of varying RF power on tribological properties of DLC film. We have checked their performance as two kinds of method such as FFM (Friction Force Microscope) and BOD (Ball-on Disk) measurement. The friction coefficients and the contact number of cycles to steady state decreased as the increase of RF power with FFM and BOD measurement, respectively.

Friction Reduction Properties of Evaporation Coated Petroleum and Silicone Oil Lubricants (증발 코팅법으로 증착된 광유와 실리콘 오일 윤활제의 마찰 저감 특성)

  • Yoo, Shin Sung;Kim, Dae Eun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.8
    • /
    • pp.864-869
    • /
    • 2013
  • As the size of mechanical components decreases, capillary forces and surface tension become increasingly significant. A major problem in maintaining high reliability of these small components is that of large frictional forces due to capillary action and surface tension. Unlike the situation with macro-scale systems, liquid lubrication cannot be used to reduce friction of micro-scale components because of the excessive capillary and drag forces. In this work, the feasibility of using evaporation to coat a thin film of organic lubricant on a solid surface was investigated with the aim of reducing friction. Petroleum and silicone oils were used as lubricants to coat a silicon substrate. It was found that friction could be significantly reduced and, furthermore, that the effectiveness of this method was strongly dependent on the coating conditions.