• Title/Summary/Keyword: Solid Solution

Search Result 1,886, Processing Time 0.033 seconds

Synthesis of Linear 1,2-Alkylaminopropanediols as Preservatives and Antimicrobial Activity (보존제로서 선형 1,2-알킬아미노프로판디올의 합성과 항균활성)

  • Cha, Kyung-On;Kwak, Sang-Woon;Jeong, Kook-In;Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • v.33 no.4
    • /
    • pp.394-401
    • /
    • 2022
  • The synthesis of 1,2-alkylaminopropanediols (1,2-AAPs) was designed to improve the hydrophilicity of linear 1,2-alkanediols having 10, 12, 14, and 16 carbon atoms in the alkyl chain. 1,2-AAPs were synthesized by reacting 3-monochloro-1,2-propanediol (3-MCPD) with linear alkylamines having 10, 12, 14 or 16 carbon atoms in an ethanol solvent at 40℃ for 2 h. The yield and purity of four types of 1,2-AAPs synthesized were found to be in the range of 51-58% and 85-99%, respectively. The amine salts of four types of 1,2-AAPs were prepared from a purified paste or solid compound by adding an acidic solution (HCl) to pH 7, and then their solubilities and antibacterial effects were tested. 1,2-decylaminopropanediol, 1,2-dodecylaminopropanediol, and 1,2-tetradecylaminopropanediol were all dissolved in water at concentrations of 100%, 50%, and 0.1%, respectively, however 1,2-hexadecylaminopropanediol was not. The antibacterial effect was improved as the length of the alkyl chain increased. As a result of confirming the preservative effect of the lotion (cosmetic formulation) applied with 1,2-AAP for application, it showed very strong antibacterial activity at low concentrations ranging from 0.005% to 0.2%.

Chemical Prelithiation Toward Lithium-ion Batteries with Higher Energy Density (리튬이온전지 고에너지밀도 구현을 위한 화학적 사전리튬화 기술)

  • Hong, Jihyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.4
    • /
    • pp.77-92
    • /
    • 2021
  • The energy density of lithium-ion batteries (LIBs) determines the mileage of electric vehicles. For increasing the energy density of LIBs, it is necessary to develop high-capacity active materials that can store more lithium ions within constrained weight. The rapid progress made in cathode technology has realized the utilization of the near-theoretical capacity of cathode materials. In contrast, commercial LIBs have still exploited graphite as active material in anodes since the 1990s. The most promising way to increase anodes' capacity is to mix high-capacity and long-cycle-life silicon oxides (SiOx) with graphite. However, the low initial Coulombic efficiency (ICE) of SiOx limits its content below 15 wt%, impeding the capacity increase in anodes. To address this issue, various prelithiation techniques have been proposed, which can improve the ICE of high-capacity anode materials. In this review paper, we introduce the principles and expected effects of prelithiation techniques reported so far. According to the reaction mechanisms, the strategies are categorized. Mainly, we focus on the recent progress of solution-based chemical prelithiation methods with commercial viability, of which lithiation reaction occurs homogeneously at liquid-solid interfaces. We believe that developing a cost-effective and mass-scalable prelithiation process holds the key to dominating the anode market for next-generation LIBs.

A study on the Separation/recovery of Rare Earth Elements from Wast Permanent Magnet by a Fractional Crystallization Method and Sulfuric Acid Leaching (폐영구자석 황산침출과 분별결정법에 의한 희토류 분리·회수에 대한 연구)

  • Kim, Dae-Weon;Kim, Hee-Seon;Kim, Boram;Jin, Yun-Ho
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.103-109
    • /
    • 2022
  • Nd-Fe-B waste permanent magnet contains about 20~30% rare earth elements and about 60~70% iron elements, and the rare earth and iron components were recovered through sulfuric acid leaching and fractional crystallization. Oxidation roasting was not performed for separation and recover of the rare earth and iron elements. The leaching characteristics were confirmed by using as variables the sulfuric acid concentration and the mineral solution concentration ratio. Sulfuric acid leaching was carried out for 3 hours for each sulfuric acid concentration. The leached solid phase was characterized for its crystalline phase, composition, and quantitative components by XRD and XRF analysis, and the filtrate was analyzed for components by ICP analysis. With sulfuric acid leaching at 3M sulfuric acid concentration, neodymium compounds were formed, the iron content was the least, and the recovery rate was high. After the filtrate remaining after sulfuric acid leaching was subjected to fractional crystallization through evaporation and concentration, the neodymium component was found to be concentrated 7.0 times and the iron component 2.8 times. In this study, the recovery rate of waste permanent magnets through sulfuric acid leaching and a fractional crystallization method without an oxidation and roasting process was confirmed to be about 99.4%.

A Study on the Method of Manufacturing Lactic Acid from Ginkgo Biloba Leaf Extraction Byproducts (은행잎 추출부산물로부터의 Lactic acid 제조법에 관한 연구)

  • Euisuk Ko;Hakrae Lee;Woncheol Shim;Soohyeon Lee;Sunjin Kim;Jaineung Kim
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.2
    • /
    • pp.95-102
    • /
    • 2023
  • Despite the easing of social distancing, demand for non-face-to-face services continues to rise. Recently, the EU is pursuing a comprehensive plastic use reduction by expanding the scope of plastic use regulations for packaging plastics according to the New Cyclical Economy Action Plan(NCEAP). In response to this trend, the packaging industry is moving away from conventional non-degradable/petroleum-based plastics and conducting research on packaging materials using biodegradable plastics such as PLA(Poly Lactic Acid), PBAT(Poly Butylene Adipate-co-butylene Terephthalate). On the other hand, ginkgo leaves occur in large quantities in Korea and act as a cause of slip accidents and flooding. In this study, a method to utilize ginkgo biloba leaf as a new alternative biomass resource was proposed by producing lactic acid through pretreatment, enzymatic saccharification, and fermentation processes. For the efficiency of lactic acid production, a comparative analysis of lignin content from before and after browning was performed. In addition, the degree of glucan extraction was evaluated by applying a pretreatment method using three catalysts: hot water, sulfuric acid, and sodium hydroxide. It is difficult to expect high production of lactic acid with single process. Therefore, an integrated process operation using both the pretreated hydrolyzate and the residual solid enzymatic saccharification solution must necessarily be applied.

Simulation analysis and evaluation of decontamination effect of different abrasive jet process parameters on radioactively contaminated metal

  • Lin Zhong;Jian Deng;Zhe-wen Zuo;Can-yu Huang;Bo Chen;Lin Lei;Ze-yong Lei;Jie-heng Lei;Mu Zhao;Yun-fei Hua
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.3940-3955
    • /
    • 2023
  • A new method of numerical simulating prediction and decontamination effect evaluation for abrasive jet decontamination to radioactively contaminated metal is proposed. Based on the Computational Fluid Dynamics and Discrete Element Model (CFD-DEM) coupled simulation model, the motion patterns and distribution of abrasives can be predicted, and the decontamination effect can be evaluated by image processing and recognition technology. The impact of three key parameters (impact distance, inlet pressure, abrasive mass flow rate) on the decontamination effect is revealed. Moreover, here are experiments of reliability verification to decontamination effect and numerical simulation methods that has been conducted. The results show that: 60Co and other homogeneous solid solution radioactive pollutants can be removed by abrasive jet, and the average removal rate of Co exceeds 80%. It is reliable for the proposed numerical simulation and evaluation method because of the well goodness of fit between predicted value and actual values: The predicted values and actual values of the abrasive distribution diameter are Ф57 and Ф55; the total coverage rate is 26.42% and 23.50%; the average impact velocity is 81.73 m/s and 78.00 m/s. Further analysis shows that the impact distance has a significant impact on the distribution of abrasive particles on the target surface, the coverage rate of the core area increases at first, and then decreases with the increase of the impact distance of the nozzle, which reach a maximum of 14.44% at 300 mm. It is recommended to set the impact distance around 300 mm, because at this time the core area coverage of the abrasive is the largest and the impact velocity is stable at the highest speed of 81.94 m/s. The impact of the nozzle inlet pressure on the decontamination effect mainly affects the impact kinetic energy of the abrasive and has little impact on the distribution. The greater the inlet pressure, the greater the impact kinetic energy, and the stronger the decontamination ability of the abrasive. But in return, the energy consumption is higher, too. For the decontamination of radioactively contaminated metals, it is recommended to set the inlet pressure of the nozzle at around 0.6 MPa. Because most of the Co elements can be removed under this pressure. Increasing the mass and flow of abrasives appropriately can enhance the decontamination effectiveness. The total mass of abrasives per unit decontamination area is suggested to be 50 g because the core area coverage rate of the abrasive is relatively large under this condition; and the nozzle wear extent is acceptable.

A Study on the Recycling Process of Nickel Recovery from Inconel 713C Scrap based on Hydrometallurgy (인코넬 713C 스크랩으로부터 니켈 자원 회수를 위한 습식제련 기반 재활용공정 연구)

  • Min-seuk Kim;Rina Kim;Kyeong-woo Chung;Jong-Gwan Ahn
    • Resources Recycling
    • /
    • v.33 no.4
    • /
    • pp.36-46
    • /
    • 2024
  • We investigated a hydrometallurgical process of nickel recovery from Inconel 713C scrap. The process proceeded with a series of i) comminution of pyrometallurgical treated scrap, ii) sulfuric acid leaching, iii) solvent extraction of unreacted acid, molybdenum, aluminum, and precipitation of chromium, iv) crystallization of nickel sulfate by vacuum evaporation, and v) nickel electrowinning. The nickel-aluminum intermetallic compound, Ni2Al3, was formed by the pyrometallurgical pretreatment readily grounded under 75 ㎛. Sulfuric acid leaching was done for 2 hours in 2 mol/L, 20 g/L solid/liquid ratio, and 80 ℃. It revealed that over 98 % of nickel and aluminum was dissolved, whereas 28 % of molybdenum was. A nickel sulfate solution with 2.34 g/L for the crystallization of nickel sulfate hydrate was prepared via solvent extraction and precipitation. Over 99 % of molybdenum and aluminum and 93 % of chromium was removed. Nickel metal with 99.9 % purity was obtained by electrowinning with the nickel sulfate monohydrate in the cell equipped with anion exchange membranes for catholyte pH control. The membrane did not work well, resulting in a low current efficiency of 73.3 %.

Automated Synthesis of [$^{18}F$]Fallypride for Routine Clinical Use (자동합성장치를 이용한 [$^{18}F$]Fallypride의 합성)

  • Park, Jun-Hyung;Moon, Byung-Seok;Lee, Hong-Jin;Lee, Hyo-Jun;Lee, In-Won;Lee, Byung-Chul;Kim, Sang-Eun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.104-109
    • /
    • 2010
  • Purpose: $[^{18}F]$Fallypride plays an effective radiotracer for the study of dopamine $D_2/D_3$ receptor occupancy, neuropsychiatric disorders and aging in humans. This tracer has the potential for clinical use, but automated labeling efficiency showed low radiochemical yields about 5~20% with relatively long labelling time of fluorine-18. In present study, we describe an improved automatic synthesis of [$^{18}F$]Fallypride using different base concentration for routine clinical use. Materials and Methods: Fully automated synthetic process of [$^{18}F$]Fallypride was perform using the TracerLab $FX_{FN}$ synthesizer under various labeling conditions and tosyl-fallypride was used as a precursor. [$^{18}F$]Fluoride was extracted with various concentration of $K_{2.2.2.}/K_2CO_3$ from $^{18}O$-enriched water trapped on the ion exchange cartridge. After azeotropic drying, the labeling reaction proceeded in $CH_3CN$ at $100^{\circ}C$ for 10 or 30 min. The reaction mixture was purified by reverse phase HPLC and collected organic solution was exchanged by tc-18 Sep-Pak for the clinically available solution. Results: The optimal labeling condition of [$^{18}F$]Fallypride in the automatic production was that 2 mg of tosyl-fallypride in acetonitrile (1 mL) was incubated at $100^{\circ}C$ for 10 min with $K_{2.2.2.}/K_2CO_3$ (11/0.8 mg). [$^{18}F$]Fallypride was obtained with high radiochemical yield about $66{\pm}1.4%$ (decay-corrected, n=28) within $51{\pm}1.2$ min including HPLC purification and solid-phase purification for the final formulation. Conclusion: [$^{18}F$]Fallypride was prepared with a significantly improved radiochemical yield with high specific activity and shorten synthetic time. In addition, this automated procedure provides the high reproducibility with no synthesis failures (n=28).

  • PDF

The Effect of Au Addition on the Hardening Mechanism in Ag-25wt% Pd-15wt% Cu (Ag-25wt% Pd-15wt% Cu 3원합금(元合金) 및 Au 첨가합금(添加合金)의 시효경화특성(時效京華特性))

  • Bea, B.J.;Lee, H.S.;Lee, K.D.
    • Journal of Technologic Dentistry
    • /
    • v.20 no.1
    • /
    • pp.37-49
    • /
    • 1998
  • The specimens used were Ag-25 Pd-15 Cu ternary alloy and Au addition alloy. These alloys were melted and casted by induction electric furnace and centrifugal casting machine in Ar atmosphere. These specimens were solution treated for 2hr at $800^{\circ}C$ and were then quenched into iced water, and aged at $350{\sim}550^{\circ}C$ Age- hardening characteristics of the small Au-containing Ag-Pd-Cu dental alloys were investigated by means of hardness testing. X-ray diffraction and electron microscope observations, electrical resistance, ergy dispersed spectra and electron probe microanalysis. Principal results are as follows : Hardening occured in two stages, i.e., stage I in low temperature and stage II in high temperature regions, during continuous aging. The case of hardening in stage I was due to the formation of the $L1_0$ type face-centered tetragonal PdCu-ordered phase in the grain interior and hardening in stage I was affected by the Cu concentration. In stage II, decomposition of the ${\alpha}$ solid solution to a PdCu ordered phase($L1_0$ type) and an Ag-rich ${\alpha}2$ phase occurred and a discontinuous precipitation occurred at the grain boundary. From the electron microscope study, it was conclued that the cause of age-hardening in this alloy is the precipitation of the PdCu ordered phase, which has AuCu I type face-centered tetragonal structure. Precipetation procedure was ${\alpha}{\to}{\alpha}+{\alpha}_2+PdCu {\to}{\alpha}_1+{\alpha}_2+PdCu$ at Pd/Cu = 1.7 Ag-Pd-Cu alloy is more effective dental alloy as ageing treatment and is suitable to isothermal ageing at $450^{\circ}C$.

  • PDF

Establishment of a Dental Unit Biofilm Model Using Well-Plate (Well-Plate를 사용한 치과용 유니트 수관 바이오필름 모델 확립)

  • Yoon, Hye Young;Lee, Si Young
    • Journal of dental hygiene science
    • /
    • v.17 no.4
    • /
    • pp.283-289
    • /
    • 2017
  • The water discharged from dental unit waterlines (DUWLs) is heavily contaminated with bacteria. The development of efficient disinfectants is required to maintain good quality DUWL water. The purpose of this study was to establish a DUWL biofilm model using well-plates to confirm the effectiveness of disinfectants in the laboratory. Bacteria were obtained from the water discharged from DUWLs and incubated in R2A liquid medium for 10 days. The bacterial solution cultured for 10 days was made into stock and these stocks were incubated in R2A broth and batch mode for 5 days. Batch-cultured bacterial culture solution and polyurethane tubing sections were incubated in 12-well plates for 4 days. Biofilm accumulation was confirmed through plating on R2A solid medium. In addition, the thickness of the biofilm and the shape and distribution of the constituent bacteria were confirmed using confocal laser microscopy and scanning electron microscopy. The average accumulation of the cultured biofilm over 4 days amounted to $1.15{\times}10^7CFU/cm^2$. The biofilm was widely distributed on the inner surface of the polyurethane tubing and consisted of cocci, short-length rods and medium-length rods. The biofilm thickness ranged from $2{\mu}m$ to $7{\mu}m$. The DUWL biofilm model produced in this study can be used to develop disinfectants and study DUWL biofilm-forming bacteria.

Measurement of Phosphorus Buffering Power in Various Soils using Desorption Isotherm (탈착 등온식을 이용한 토양 중 인산 완충력 측정)

  • Lee, Jin-Ho;Doolittle, James J.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.4
    • /
    • pp.220-227
    • /
    • 2004
  • Phosphorus desorption study is essential to understanding P behavior in agricultural and environmental soils because phosphorus is considered as two different aspects, a plant nutrient versus an environmental contaminant. This study was conducted to determine soil P buffering power related to P desorption quantity intensity (Q/I) parameters, $Q_{max}$(an index of P release capacity) and $l_0$(an index of the intensity factor), and to investigate the characteristics of relationship between the P desorption Q/I parameters and the soil properties. Soil samples were prepared with treatments of 0 and $100mg\;P\;kg^{-1}$ applied as $KH_2PO_4$ solution. The P desorption Q/I curves were obtained by a procedure using anion exchange resin beads and described by an empirical equation ($Q=aI^{-1}+bln(I+1)+c$). The P desorption Q/I curves for the high available P (${\g}20mg\;kg^{-1}$ of Olsen P) soils were characteristic concave trends with or without soil P enrichment, whereas for the low available P (${\lt}20mg\;kg^{-1}$ of Olsen P) soils, the anticipated Q/I concave curves could not be obtained without a proper amount of P addition. When the soils were enriched in phosphates, the values of desorbed solid phase labile P and solution P, such as $Q_{max}$ and $I_0$ respectively, were increased, but the ratio of $Q_{max}$ versus $I_0$ was decreased. Thus, the slope of desorption Q/I curve represented as phosphorus buffering power, $|BP_0|$, is decreased. The $|BP_0|$ values of the high available P soils ranged between 48 and $61L\;kg^{-1}$ in the P untreated samples and between 18 and $44L\;kg^{-1}$ in the P enriched samples. Overall $|BP_0|$ values of both low and high available P soils treated with $l00mg\;P\;kg^{-1}$ ranged between 14 and $79L\;kg^{-1}$. The $Q_{max}$, values ranged between 71.4 and $173.1mg\;P\;kg^{-1}$, and the lo values ranged between 0.98 and $3.82mg\;P\;L^{-1}$ in the P enriched soils. The $Q_{max}$ and $I_0$ values that control the P buffering power may be not specifically related to a specific soil property, but those values were complicatedly related to soil pH, clay content, soil organic matter content, and lime. Also, phosphorus release activity, however, markedly depended on the desorbability of the applied P as well as the native labile P.