• Title/Summary/Keyword: Solid Separation

Search Result 500, Processing Time 0.022 seconds

Recovery of Intracel lular Biomaterials from the Suspension of Lysed or Disintegrated Yeast by Membranes

  • Matsumoto, Kanji
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.10a
    • /
    • pp.1-6
    • /
    • 1994
  • Many useful biomaterials like enzymes are contained in yeast cells. However, the release of these intracellular biomateriais from the cells is required to recover them with hot water, solvent or various cell breakage methods of mechanical or non mechanical ones. The cell lysis or breakage of yeast is usually made by solvent like ethyl acetate and mechanical disintrgration with high pressure homogenizer or agitating beads mill. The separation of cell debris (i.e. solid liquid separation) is done by centrifuge or membrane depending on the recovery conditions. The features of both separation methods are shown in Tables 1 and 2. As it is often difficult to obtain a clear supernatant by centrifuge from the suspension containing cell debris, the membrane separation is also often used to gel a clear supernatant. In this report we introduce the several applications of membrane separation to separate the cell debris of yeast disintegrated chemically or mechanically and to recover the intracellular biomaterials.

  • PDF

Applicability of the Hydrocyclone for Efficiency Improvements to Sea-water Cooling Systems (해수 냉각시스템 효율 향상을 위한 하이드로사이클론의 적용가능성)

  • Kim Bu-Gi;Han Won-Hui;Cho Dae-Hwan;Choi Min-Seon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.11 no.2 s.23
    • /
    • pp.109-115
    • /
    • 2005
  • Hydrocyclone has been widely used for the solid-liquid separation in many industrial sites because of its comparatively preferable applications that can be applied to wide-range particle sizes. If seawater with impurities flows through pumps or heat exchanger, it might cause an decrease in the efficiency of cooling system In this paper, we have suggested some methods of separating impurities from seawater in the cooling system by using a Hydrocyclone. The effects of design factors as solid concentration, cyclone inlet pressure, flow rate and diameter of underflow on the separating performance of the Hydrocyclone were investigated The results from this study are summarized as follows: 1) In proportion to the decrease of solid concentration, the efficiency of solid-liquid separation is improved. 2) According as the cyclone inlet pressure increases the efficiency of separation is improved. Conclusively, this research suggested that the Hydrocyclone will be used as a pre-treatment system of cooling water in machines, and eventually prevent unexpected accidents in engine systems.

  • PDF

Applicability of the Hydrocyclone for Efficiency Improvements to Sea-water Cooling Systems (해수 냉각시스템 효율 향상을 위한 하이드로사이클론의 적용가능성)

  • Kim Bu-Gi;Han Won-Hui;Cho Dae-Hwan;Choi Min-Sun
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2004.11a
    • /
    • pp.109-115
    • /
    • 2004
  • Hydrocyclone has been widely used for the solid-liquid separation in many industrial sites because of its comparatively preferable applications that can be applied to wide-range particle sizes. If seawater with impurities flows through pumps or heat exchanger, it might cause an decrease in efficiency of cooling system. In this paper, we have suggested some methods of separating impurities from seawater in the cooling system by using a Hydrocyclone. The effects of design factors as solid concentration, cyclone inlet pressure, flow rate and diameter of underflow on the separating performance of the Hydrocyclone were investigated The results from this study are summarized as follows: 1) In proportion to the decrease of solid concentration, the efficiency of solid-liquid separation is improved 2) According as the cyclone inlet pressure increases the efficiency of separation is improved Conclusively, this research suggested that the Hydrocyclone will be used as a pre-treatment system of cooling water in machines, and eventually prevent unexpected accidents in engine systems.

  • PDF

Preparation and Characterization of a Surface Renewable Solid State Hg/HgO Reference Electrode Utilizing Gold Amalgam

  • Kim, Won;Park, Jong-Man
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.3
    • /
    • pp.439-442
    • /
    • 2007
  • A solid state Hg(Au)/HgO reference electrode was prepared utilizing gold amalgam solid particles. Solid fine powder of the gold amalgam was prepared by chemical reduction of Au(III) with NaBH4 followed by reduction of Hg(II) in the presence of gold fine particles. The solid content in the suspension of the gold amalgam particles and fine mercury oxide particles in DMF containing PVC was precipitated by the addition of a large amount of water to give solid Hg(Au)/HgO/PVC mixture. After drying, the mixture was pressure-molded to a physically stable Hg(Au)/HgO composite reference electrode material. The electrochemical characteristics of the electrode as a reference electrode were very similar to an ordinary Hg/HgO reference electrode. The electrode material can be molded and fabricated in any desired shape and size. The surface can be renewed by a simple polishing process whenever contaminated or deactivated. The applicability of the electrode in the electrochemical detection of carbohydrates after anion exchange separation was evaluated.

Development of Treatment Process for Residual Coal from Biosolubilization

  • Rifella, Archi;Shaur, Ahmad;Chun, Dong Hyuk;Kim, Sangdo;Rhim, Young Joon;Yoo, Jiho;Choi, Hokyung;Lim, Jeonghwan;Lee, Sihyun;Rhee, Youngwoo
    • Clean Technology
    • /
    • v.24 no.2
    • /
    • pp.119-126
    • /
    • 2018
  • This study introduced a treatment process that was developed to treat Indonesian low-rank coal with high-ash content, which has the same characteristics as residual coal from the biosolubilization process. The treatment process includes separation of ash, solid-liquid separation, pelletizing, and drying. To reduce the ash content, flotation was performed using 4-methyl-2-pentanol (MIBC) as frother, and kerosene, waste oil, and cashew nut shell liquid (CNSL) as collectors. The increasing amount of collector had an effect on combustible coal recovery and ash reduction. After flotation, a filter press, extruder, and an oven drier were used to make a dried coal pellet. Then another coal pellet was made using asphalt as a binder. The compressive strength and friability of the coal pellets were tested and compared.

Recent progress in supported liquid membrane technology: stabilization and feasible applications

  • Molinari, Raffaele;Argurio, Pietro
    • Membrane and Water Treatment
    • /
    • v.2 no.4
    • /
    • pp.207-223
    • /
    • 2011
  • Supported Liquid Membranes (SLMs) have been widely studied as feasible alternative to traditional processes for separation and purification of various chemicals both from aqueous and organic matrices. This technique offers various advantages like active transport, possibility to use expensive extractants, high selectivity, low energy requirements and minimization of chemical additives. SLMs are not yet used at large scale in industrial applications, because of the low stability. In the present paper, after a brief overview of the state of the art of SLM technology the facilitated transport mechanisms of SLM based separation is described, also introducing the small and the big carrousel models, which are employed for transport modeling. The main operating parameters (selectivity, flux and permeability) are introduced. The problems related to system stabilization are also discussed, giving particular attention to the influence of membrane materials (solid membrane support and organic liquid membrane (LM) phase). Various approaches proposed in literature to enhance SLM stability are also reviewed. Modification of the solid membrane support, creating an additional layer on membrane surface, which acts as a barrier to LM phase loss, increases system stability, but the membrane permeability, and then the flux, decrease. Stagnant Sandwich Liquid Membrane (SSwLM), an implementation of the SLM system, results in both high flux and stability compared to SLM. Finally, possible large scale applications of SLMs are also reviewed, evidencing that if the LM separation process is opportunely carried out (no production of byproducts), it can be considered as a green process.

Bursting Performance Analysis of a Pulse Separation Device for a Rocket Motor (추진기관 적용 펄스분리장치의 파열특성 분석)

  • Lee, Dong-Won;Lee, Won-Bok;Kim, In-Sik;Kim, Won-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.245-248
    • /
    • 2011
  • A multi pulse rocket motor(MPRM) has several advantages compared to the single one. The range and the terminal velocity of the guided missile can be remarkably increased by the application of the pulse separation device(PSD) to the solid rocket motor which resulted in appropriate thrust distribution. In this study, the full scale heavy type dual pulse rocket motor with the bulkhead type PSD was designed, manufactured, and fire-tested. The bursting time and pressure of PSD were analyzed by the pressure, thrust and vibration results of static fire tests. As a result, the design requirement was verified that bursting pressure is lower than 30% of 2nd pulse operating pressure.

  • PDF

The treatment of coolant wastewater of rolling plate process by High Gradient Magnetic Separation

  • Kim, Tae-Hyung;Ha, Dong-Woo;Kwon, Jun-Mo;Sohn, Myung-Hwan;Baik, Seung-Kyu;Oh, Sang-Soo;Ko, Rock-Kil;Kim, Ho-Sup;Kim, Young-Hun;Park, Seong-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.4
    • /
    • pp.8-11
    • /
    • 2009
  • This study introduced wastewater treatment method by High Gradient Magnetic Separation (HGMS). HGMS treatment was high efficient method for various industrial wastewaters. The system is currently research state, but we have surveyed commercialize the technology for industry. In rolling plate process, coolant wastewater was recycled by sedimentation and sand filter system. It needs several large reservoirs and long time to remove suspended solid (SS) like metal fines and iron oxide in hot rolling plate making process. If removing rate of suspended solid in rolling coolant wastewater is improved by using HGMS system, the productivity of working process can be increased and the area of reservoir can be reduced. We manufactured high temperature superconducting HGMS system that had a purpose to treatment of coolant wastewater in rolling plate process. We fabricated the prototypes of magnetic matrix filter consisting of stainless steel 430 mesh, which is a core component in the magnetic separation system, In our basic preliminary experiment using HGMS system, it has been clear that the fine paramagnetic particles in the coolant wastewater obtained from rolling plate process of POSCO can be separated with high efficiency.

Thermodynamic Study of Sequential Chlorination for Spent Fuel Partitioning

  • Jinmok Hur;Yung-Zun Cho;Chang Hwa Lee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.3
    • /
    • pp.397-410
    • /
    • 2023
  • This study examined the efficacy of various chlorinating agents in partitioning light water reactor spent fuel, with the aim of optimizing the chlorination process. Through thermodynamic equilibrium calculations, we assessed the outcomes of employing MgCl2, NH4Cl, and Cl2 as chlorinating agents. A comparison was drawn between using a single agent and a sequential approach involving all three agents (MgCl2, NH4Cl, and Cl2). Following heat treatment, the utilization of MgCl2 as the sole chlorinating agent resulted in a moderate separation. Specifically, this method yielded a solid separation with 96.9% mass retention, 31.7% radioactivity, and 44.2% decay heat, relative to the initial spent fuel. In contrast, the sequential application of the chlorinating agents following heat treatment led to a final solid separation characterized by 93.1% mass retention, 5.1% radioactivity, and 15.4% decay heat, relative to the original spent fuel. The findings underscore the potential effectiveness of a sequential chlorination strategy for partitioning spent fuel. This approach holds promise as a standalone technique or as a complementary process alongside other partitioning processes such as pyroprocessing. Overall, our findings contribute to the advancement of spent fuel management strategies.

Development of Side Jet Thruster with Nozzle Closure Separation Device (고기동 추진기관의 노즐개방형 측추력기 개발)

  • Han, Houkseop;Park, Euiyong;Kim, Dongjin;Son, Youngil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.2
    • /
    • pp.80-85
    • /
    • 2014
  • Side jet thruster using nozzle closure separation device provides a solid rocket with a trajectory shift function. Side jet thruster consists of low combustion temperature propellant, neutral type propellant grain and nozzle closure separation device. If a trajectory shift is required, side jet thrust is generated on the rocket by separating some nozzle closures located in the opposite direction to thrust. After completing trajectory shift, the other nozzle closures located in the thrust direction are separated to cease side jet thrust. The operation process is verified through ground static test. The result in this study can be applied to changing rocket trajectory by controlling side jet thrust through nozzle closure separation.