Thermodynamic Study of Sequential Chlorination for Spent Fuel Partitioning

Jinmok Hur*, Yung-Zun Cho, and Chang Hwa Lee

Korea Atomic Energy Research Institute, 111, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon 34057, Republic of Korea

(Received June 22, 2023 / Revised July 11, 2023 / Approved July 13, 2023)

This study examined the efficacy of various chlorinating agents in partitioning light water reactor spent fuel, with the aim of optimizing the chlorination process. Through thermodynamic equilibrium calculations, we assessed the outcomes of employing MgCl₂, NH₄Cl, and Cl₂ as chlorinating agents. A comparison was drawn between using a single agent and a sequential approach involving all three agents (MgCl₂, NH₄Cl, and Cl₂). Following heat treatment, the utilization of MgCl₂ as the sole chlorinating agent resulted in a moderate separation. Specifically, this method yielded a solid separation with 96.9% mass retention, 31.7% radioactivity, and 44.2% decay heat, relative to the initial spent fuel. In contrast, the sequential application of the chlorinating agents following heat treatment led to a final solid separation characterized by 93.1% mass retention, 5.1% radioactivity, and 15.4% decay heat, relative to the original spent fuel. The findings underscore the potential effectiveness of a sequential chlorination strategy for partitioning spent fuel. This approach holds promise as a standalone technique or as a complementary process alongside other partitioning processes such as pyroprocessing. Overall, our findings contribute to the advancement of spent fuel management strategies.

Keywords: Thermodynamic calculation, Equilibrium composition, Sequential chlorination, Spent fuel, Partitioning

*Corresponding Author. Jinmok Hur, Korea Atomic Energy Research Institute, E-mail: jmhur@kaeri.re.kr, Tel: +82-42-868-2028

ORCID

Jinmok Hur Chang Hwa Lee http://orcid.org/0000-0001-7110-3435 http://orcid.org/0000-0002-4624-5738 Yung-Zun Cho

http://orcid.org/0000-0003-2532-9489

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/ by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited

1. Introduction

The high radioactivity and decay heat of spent fuel comes mostly from a few elements such as Pu, Am, Cm, Cs, Sr, Ba, Y, Eu, and Kr. These elements can be classified into groups with similar chemical behavior, and their physical properties can also vary by group. For example, ²³⁹Pu, which belongs to the actinide group, has a half-life of 24,100 years, while ¹³⁷Cs and ⁹⁰Sr, which belongs to the alkali and alkaline earth metals group, have significantly shorter half-lives of 30 years and 29 years, respectively. Pyroprocessing has been developed in conjunction with fast reactors to separate spent fuel into groups, and then store cesium and strontium for about 300 years to reduce radioactivity and decay heat, and recycle plutonium along with americium and curium as fuel to convert them into short-lived nuclides while generating electricity [1-5].

Apart from recovering and recycling zirconium from the cladding of light water reactor spent fuel through chlorination [6], chlorination can also be employed to partitioning of spent fuel components. Efforts are underway to develop chlorination processes using MgCl₂, NH₄Cl, Cl₂, ZrCl₄, CCl₄, etc. as chlorinating agents [7-12]. Recently, Deep Borehole Disposal has emerged as a promising disposal method [13-14]. If the chlorination products are separated according to their radioactivity and decay heat, and then processed into a solid waste form with a height and diameter suitable for Deep Borehole Disposal, the disposal efficiency can be greatly improved while reducing the burden of large-diameter drilling for Deep Borehole Disposal. Pyroprocessing pretreatment technique such as oxide electrowinning have been sought that can reduce the burden of pyroprocessing by reducing the amount of material to be processed in pyroprocessing [15]. If the chlorination process is combined with pyroprocessing as a pretreatment process, it can be expected to substantially reduce the amount of material that needs to undergo pyroprocessing.

In this study, the efficiency of $MgCl_2$ and NH_4Cl chlorinating agents, which have recently attracted attention, was

compared with the basic chlorinating agent, Cl_2 , through thermodynamic equilibrium calculations. Additionally, this study evaluated the enhanced partitioning effects achieved when chlorination agents are sequentially applied, as compared to using a single chlorinating agent. The findings of this study are expected to contribute to the optimization of the chlorination process and expand its applications.

2. Methodology

In this study, a light water reactor spent fuel with an initial enrichment of 4.5wt% ²³⁵U, a release burnup of 55 GW/ MtU, and 10 years of cooling was chosen as the reference spent fuel. The main 50 nuclides present in the spent fuel were analyzed, and the amount of spent fuel was 10,003 kg on an elemental basis. Spent fuel components can exist in various oxidation states depending on the degree of burnup [16]. Since it is difficult to perform equilibrium calculations considering all the various oxidation states, equilibrium calculations were performed using the chemical forms shown in Table 1 as a starting point, and the mass, radioactivity, and decay heat were expressed accordingly.

The volatile and semi-volatile components of the spent fuel can be separated from the spent fuel through heat treatment [17]. Through heat treatment in an oxidizing atmosphere, the UO₂ in the spent fuel is further oxidized increasing its volume and transforming the spent fuel into a powder form, which can increase the reaction rate of the subsequent chlorination process. In this study, it is assumed that group 1 (H, Rb, Cs) and some other elements (Kr, Xe, C, Sb, Br, I, Te, Se) are completely volatilized and separated from the solid product during the heat treatment process performed at 1,400°C. As shown in Tables 2 and 3, it is assumed that 100% of the UO₂ is converted to U_3O_8 and 100% of the Tc is converted to Tc₂O₇ and volatilized during the heat treatment process. As a result, the chlorination process used the spent fuel components shown in Table 2 as inputs. Table 2 shows that the actinide compounds constitute the majority of the

		Mass (kg)	Radioactivity (kCi)	Decay heat (kW)
Actinide	Ac ₂ O ₃ , ThO ₂ , PaO ₂ , UO ₂ , NpO ₂ , PuO ₂ , AmO ₂ , CmO ₂	10,698.2	1,347.8	6.0
Alkali & Alkaline earth	Rb ₂ O, Cs ₂ O, SrO, BaO	103.0	3,720.4	8.8
Rare earth	Y ₂ O ₃ , La ₂ O ₃ , Ce ₂ O ₃ , Pr ₂ O ₃ , Nd ₂ O ₃ , Pm ₂ O ₃ , Sm ₂ O ₃ , Eu ₂ O ₃ , Gd ₂ O ₃ , Tb ₂ O ₃ , Dy ₂ O ₃ , Ho ₂ O ₃ , Er ₂ O ₃ , Tm ₂ O ₃ , Yb ₂ O ₃ , Lu ₂ O ₃	200.7	1,152.9	5.8
Volatile	Kr, Xe, H, CO ₂ , Sb, Br, I, TeO ₂ , SeO ₂	113.5	98.0	0.15
Etc.	Fe, Ni, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn	203.3	17.3	0.081
Sum		11,318.7	6,336.4	20.8

Table 1. Reference spent nuclear fuel: initial U enrichment of 4.5wt%, discharge burnup of 55 GW/MtU, 10 yrs cooling

Table 2. Mass, radioactivity, and decay heat of solid products after heat treatment

		Mass (kg)	Radioactivity (kCi)	Decay heat (kW)
Actinide	Ac ₂ O ₃ , ThO ₂ , PaO ₂ , U ₃ O ₈ , NpO ₂ , PuO ₂ , AmO ₂ , CmO ₂	11,114.6	1,347.8	6.0
Alkali & Alkaline earth	SrO, BaO	48.6	2,238.9	6.2
Rare earth	Y ₂ O ₃ , La ₂ O ₃ , Ce ₂ O ₃ , Pr ₂ O ₃ , Nd ₂ O ₃ , Pm ₂ O ₃ , Sm ₂ O ₃ , Eu ₂ O ₃ , Gd ₂ O ₃ , Tb ₂ O ₃ , Dy ₂ O ₃ , Ho ₂ O ₃ , Er ₂ O ₃ , Tm ₂ O ₃ , Yb ₂ O ₃ , Lu ₂ O ₃	200.7	1,152.9	5.8
Etc.	Fe, Ni, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In, Sn	190.8	17.1	0.081
Sum		11,554.7	4,756.7	18.1

Table 3. Mass, radioactivity, and decay heat of vapor products after heat treatment

		Mass (kg)	Radioactivity (kCi)	Decay heat (kW)
Actinide	-	0.0	0.0	0.0
Alkali & Alkaline earth	Rb_2O, Cs_2O	54.4	1,481.5	2.6
Rare earth	-	0.0	0.0	0.0
Volatile	Kr, Xe, H ₂ , CO ₂ , Sb, Br, I ₂ , TeO ₂ , SeO ₂	113.5	98.0	0.15
Etc.	Tc_2O_7	12.5	0.2	0.0001
Sum		180.4	1,579.7	2.8

		Mass (kg)	Radioactivity (kCi)	Decay heat (kW)
Actinide	ThO ₂ , ThOCl ₂ , PaO ₂ , PaCl ₂ O, U ₃ O ₈ , UO ₂ Cl, UO ₂ Cl ₂ , U ₄ O ₉ , UO ₂ , (UO ₂) ₂ Cl ₃ , U ₃ O ₇ , UOCl ₂ , UOCl ₃ , NpO ₂ , NpOCl ₂ , PuO ₂ , PuOCl, AmOCl, AmO ₂ , CmOCl, CmO ₂	11,267.4	1,312.1	5.9
Alkali & Alkaline earth	-	0.0	0.0	0.0
Rare earth	Y ₂ O ₃ , YOCl, LaOCl, CeOCl, PrOCl, NdOCl, Pm ₂ O ₃ , SmOCl, EuOCl, GdOCl, Tb ₂ O ₃ , TbOCl, Dy ₂ O ₃ , DyOCl, Ho ₂ O ₃ , HoOCl, Er ₂ O ₃ , ErOCl, Tm ₂ O ₃ , TmOCl, Yb ₂ O ₃ , YbOCl, Lu ₂ O ₃ , LuOCl	104.7	678.0	3.2
Etc.	Fe, Ni, Zr, Nb, Mo, Rh, Ru, Pd, Ag, Cd, In, Sn	189.9	17.1	0.08
Sum		11,562.0	2,007.2	9.2

Table 4. Mass, radioactivity, and decay heat of oxides and oxychlorides products after heat treatment and chlorination by MgCl₂

Table 5. Mass, radioactivity, and decay heat of chlorides products after heat treatment and chlorination by $MgCl_2$

		Mass (kg)	Radioactivity (kCi)	Decay heat (kW)
Actinide	AcCl ₃ , ThCl ₄ , PaCl ₃ , PaCl ₅ , NpCl ₄ , NpCl ₃ , PuCl ₃ , AmCl ₃ , CmCl ₃	5.2	35.6	0.1
Alkali & Alkaline earth	SrCl ₂ , BaCl ₂	68.5	2,238.8	6.2
Rare earth	YCl ₃ , LaCl ₃ , CeCl ₃ , PrCl ₃ , NdCl ₃ , PmCl ₃ , SmCl ₃ , EuCl ₃ , EuCl ₂ , GdCl ₃ , TbCl ₃ , DyCl ₃ , HoCl ₃ , ErCl ₃ , TmCl ₃ , YbCl ₃ , YbCl ₂ , LuCl ₃	166.3	474.2	2.5
Etc.	ZrCl, AgCl, InCl	1.3	0.0004	0.0
Sum		241.3	2,748.6	8.8

solid product's mass after heat treatment (96.19%), while the radioactivity is dominated by the alkaline earth metal compounds (SrO, BaO) (47.07%).

Thermodynamic equilibrium compositions and process flow of the chlorination reaction were evaluated using HSC Chemistry Software [18]. The HSC-Equilibrium module of the software employs the Gibbs energy minimization method to calculate equilibrium product amounts in isothermal and isobaric conditions. Additionally, the HSC-Sim module of the software was used for the simulation of chemical reactions encompassing both the heat treatment unit and the chlorination units.

3. Results and Discussion

3.1 Chlorination by Using a Single Chlorination Agent

Among the products of chlorination by MgCl₂, the oxides and oxychloride are shown in Table 4, and the chlorides products are shown in Table 5. MgCl₂ chlorination was assumed to proceed by immersing the solid product from the heat treatment in molten MgCl₂ at 800°C. The inputs to the equilibrium calculation were 1 mol of spent fuel reactants and 5 mol of MgCl₂. It was assumed that, in the molten

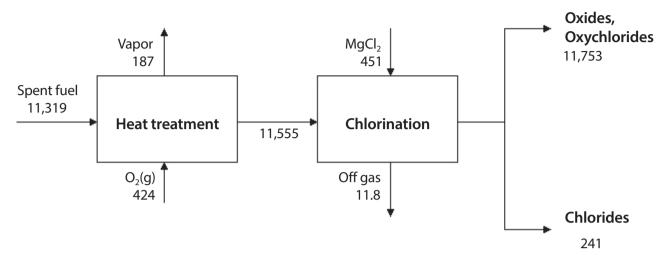


Fig. 1. Mass flow (kg) of heat treatment and chlorination by using MgCl₂.

		Mass (kg)	Radioactivity (kCi)	Decay heat (kW)
Actinide	ThO ₂ , ThOCl ₂ , PaCl ₂ O, UO ₂ , NpO ₂ , PuOCl, AmOCl, CmOCl	10,601.6	450.0	3.3
Alkali & Alkaline earth	-	0.0	0.0	0.0
Rare earth	YOCl, LaOCl, CeOCl, PrOCl, NdOCl, SmOCl, EuOCl, GdOCl, TbOCl, DyOCl, HoOCl, ErOCl, TmOCl, YbOCl, LuOCl	33.4	774.8	4.3
Etc.	Mo, Rh, Ru, Pd, Ag, Sn	128.7	17.0	0.08
Sum		10,763.7	1,241.8	7.7

Table 6. Mass, radioactivity, and decay heat of oxides and oxychlorides products after heat treatment and chlorination by NH4Cl

salt, the oxides and oxychlorides precipitated as 100% solids, while the chlorides remained in the liquid phase. Therefore, in the mass flow, the oxide and oxychloride are in the same stream, while the chloride is in a separate stream. Using MgCl₂, alkaline earth metal oxides are completely converted to chlorides, while actinide oxides and transition and noble metals are only converted to chlorides in relatively small amounts. This suggests that MgCl₂ is an effective chlorinating agent for separating alkaline earth metals from actinides, transition and noble metals. Notably, when MgCl₂ is used as a chlorinating agent, various uranium oxides and uranium oxychlorides are produced, as shown in Table 4. Fig. 1 illustrates the mass flow of the heat treatment and MgCl₂ chlorination process. The spent fuel mass of 10,003 kg on an elemental basis is 11,319 kg on an oxide basis, and the solid products mass of the heat treatment increases to 11,555 kg, mainly due to the weight gain in the conversion of UO₂ to U₃O₈. Chlorination requires 451 kg of MgCl₂, with Cl₂(g) and O₂(g) as off-gases. When MgCl₂ is used as the chlorinating agent, the oxides and oxychlorides stream is accompanied by 191 kg of MgO produced by the reaction of MgCl₂ with oxides.

		Mass (kg)	Radioactivity (kCi)	Decay heat (kW)
Actinide	AcCl ₃ , ThCl ₄ , PaCl ₃ , NpCl ₃ , PuCl ₃ , AmCl ₃ , CmCl ₃	126.5	897.8	2.7
Alkali & Alkaline earth	SrCl ₂ , BaCl ₂	68.5	2,238.9	6.2
Rare earth	YCl ₃ , LaCl ₃ , CeCl ₃ , PrCl ₃ , NdCl ₃ , PmCl ₃ , SmCl ₃ , EuCl ₃ , EuCl ₂ , GdCl ₃ , TbCl ₃ , DyCl ₃ , HoCl ₃ , ErCl ₃ , TmCl ₃ , YbCl ₂ , YbCl ₃ , LuCl ₃	257.7	378.1	1.5
Etc.	FeCl ₂ , NiCl ₂ , ZrCl ₄ , NbCl _{2.67} , NbCl _{3.13} , NbCl _{2.33} , NbCl ₃ , NbCl ₂ , NbCl ₄ , CdCl ₂ , InCl ₃ , InCl ₂ , InCl	156.9	0.07	0.00001
Sum		609.6	3,514.9	10.4

Table 7. Mass, radioactivity, and d	cav heat of chlorides r	products after heat treatment	and chlorination by NH ₄ Cl

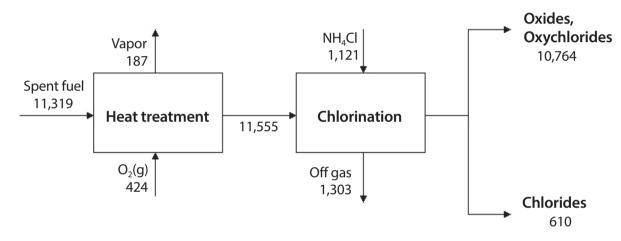


Fig. 2. Mass flow (kg) of heat treatment and chlorination by using NH₄Cl.

Among the products of chlorination by NH_4Cl , the oxides and oxychloride are shown in Table 6, and the chlorides products are shown in Table 7. NH_4Cl chlorination was assumed to proceed by reacting the solid product from the heat treatment with NH_4Cl at 370°C in a sealed container. The inputs to the equilibrium calculation were 1 mole of spent fuel reactants and 10 moles of NH_4Cl . After the reaction, the chlorination output was assumed to be immersed in LiCl-KCl molten salt at 500°C resulting in the precipitation of the oxides and oxychlorides as 100% solids, while the chlorides remained in the liquid phase. It was assumed that LiCl-KCl molten salt has no chlorinating effect. When NH_4Cl is used as a chlorinating agent, NH_4Cl is decomposed, and $H_2(g)$ and $Cl_2(g)$ participate in the reaction. Therefore, chlorination by NH_4Cl is carried out in a reducing atmosphere. Unlike $MgCl_2$ chlorination, NH_4Cl chlorination only produces UO_2 for uranium and PuOCl and PuCl₃ for plutonium, suggesting relatively simple separation of plutonium from uranium. Identical to $MgCl_2$ chlorination, NH_4Cl chlorination completely converts alkaline earth metal oxides to chlorides. Fig. 2 shows the mass flow of the heat treatment and NH_4Cl chlorination process. For chlorination, 1,121 kg of NH_4Cl is required, and $Cl_2(g)$, $H_2O(g)$, $H_2(g)$, and $N_2(g)$ are generated as off-gases. The mass of chlorides produced by NH_4Cl chlorination is 610 kg, surpassing the chlorides mass obtained from $MgCl_2$

	v 2		
	Mass (kg)	Radioactivity (kCi)	Decay heat (kW)
ThO ₂ , ThOCl ₂ , PaCl ₂ O, UO ₂ Cl ₂ , UO ₃ , NpO ₂ , PuO ₂ , AmOCl, CmOCl	11,639.0	1,320.5	5.1
-	0.0	0.0	0.0
YOCl, LaOCl, CeO ₂ , Pr ₁₂ O ₂₂ , NdOCl, SmOCl, EuOCl, GdOCl, TbOCl, DyOCl, HoOCl, ErOCl, TmOCl, YbOCl, LuOCl	75.5	939.5	5.2
-	0.0	0.0	0.0
	11,714.5	2,260.0	10.3
	NpO ₂ , PuO ₂ , AmOCl, CmOCl - YOCl, LaOCl, CeO ₂ , Pr ₁₂ O ₂₂ , NdOCl, SmOCl, EuOCl, GdOCl, TbOCl, DyOCl, HoOCl, ErOCl, TmOCl, YbOCl, LuOCl	(kg) ThO2, ThOCl2, PaCl2O, UO2Cl2, UO3, NPO2, PuO2, AmOCl, CmOCl 11,639.0 - 0.0 YOCl, LaOCl, CeO2, Pr12O22, NdOCl, SmOCl, EuOCl, GdOCl, TbOCl, DyOCl, HoOCl, ErOCl, TmOCl, YbOCl, LuOCl 75.5 - 0.0	(kg) (kCi) ThO ₂ , ThOCl ₂ , PaCl ₂ O, UO ₂ Cl ₂ , UO ₃ , NpO ₂ , PuO ₂ , AmOCl, CmOCl 11,639.0 1,320.5 - 0.0 0.0 YOCl, LaOCl, CeO ₂ , Pr ₁₂ O ₂₂ , NdOCl, SmOCl, EuOCl, GdOCl, TbOCl, DyOCl, HoOCl, ErOCl, TmOCl, YbOCl, LuOCl 75.5 939.5 - 0.0 0.0

Table 8. Mass, radioactivity, and decay heat of oxides and oxychlorides products after heat treatment and chlorination by Cl₂

Table 9. Mass, radioactivity, and decay heat of chlorides products after heat treatment and chlorination by Cl_2

		Mass (kg)	Radioactivity (kCi)	Decay heat (kW)
Actinide	AcCl ₃ , AmCl ₃ , CmCl ₃	12.7	27.6	0.9
Alkali & Alkaline earth	SrCl ₂ , BaCl ₂	68.5	2,238.8	6.2
Rare earth	YCl ₃ , LaCl ₃ , CeCl ₃ , PrCl ₃ , NdCl ₃ , PmCl ₃ , SmCl ₃ , EuCl ₃ , GdCl ₃ , TbCl ₃ , DyCl ₃ , HoCl ₃ , ErCl ₃ , TmCl ₃ , YbCl ₃ , LuCl ₃	191.9	210.3	0.6
Etc.	FeCl ₃ , FeCl ₂ , NiCl ₂ , ZrCl ₄ , NbCl ₅ , MoCl ₅ , MoCl ₄ , RuCl ₃ , RhCl ₃ , PdCl ₂ , AgCl, CdCl ₂ , InCl ₃ , SnCl ₂	453.9	17.1	0.08
Sum		727.0	2,493.8	7.8

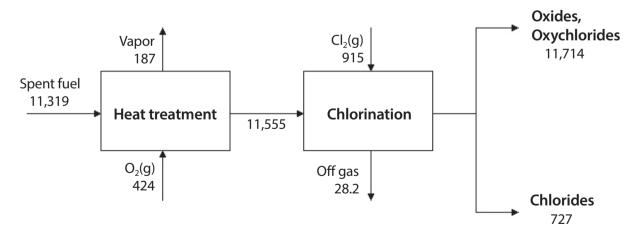


Fig. 3. Mass flow (kg) of heat treatment and chlorination by using Cl₂.

chlorination (241 kg), indicating a relatively stronger chlorination ability of NH_4Cl .

Among the products of chlorination by Cl_2 , the oxides and oxychloride are shown in Table 8, and the chlorides products are shown in Table 9. Cl_2 chlorination was set to react $Cl_2(g)$ gas with the solid product from the heat treatment at 100°C. The inputs to the equilibrium calculation were 1 mol of spent fuel reactant and 5 mol of $Cl_2(g)$. After the reaction, the chlorination output was assumed to be immersed in LiCl-KCl molten salt at 500°C resulting in the precipitation of the oxides and oxychlorides as 100% solids, while the chlorides remained in the liquid phase. Identical to MgCl₂ and NH₄Cl chlorination, Cl_2 chlorination completely converts alkaline earth metal oxides to chlorides. Notably, Cl_2 chlorination has the ability to convert 100% of the metals to chlorides distinguishing it from other chlorination processes. Consequently, Cl_2 chlorination is an effective chlorination method for separating metals from oxides and oxychlorides. Fig. 3 shows the mass flow of the heat treatment and Cl_2 chlorination process. The chlorination process necessitates 915 kg of $Cl_2(g)$ and $O_2(g)$ is generated as an off-gas. Although Cl_2 chlorination chlorinates actinide elements to a lesser extent than NH_4Cl chlorination, the complete conversion of metals to chlorides results in chlorides mass of 727 kg in Cl_2 chlorination, surpassing the chlorides mass obtained from NH_4Cl chlorination, which was 610 kg.

Table 10. Mass, radioactivity, and decay heat of oxides and oxychlorides products after heat treatment and chlorination by MgCl2 and NH4Cl

		Mass (kg)	Radioactivity (kCi)	Decay heat (kW)
Actinide	ThO ₂ , ThOCl ₂ , PaCl ₂ O, UO ₂ , UOCl ₂ , NpO ₂ , NpOCl ₂ , PuOCl, AmOCl, CmOCl	10,570.9	112.1	2.0
Alkali & Alkaline earth	-	0.0	0.0	0.0
Rare earth	YOCl, LaOCl, CeOCl, P2OCl, NdOCl, SmOCl, GdOCl, TbOCl, DyOCl, HoOCl, ErOCl, TmOCl, YbOCl, LuOCl	9.1	241.2	1.3
Etc.	Mo, Rh, Ru, Pd, Ag, Sn	128.7	17.0	0.08
Sum		10,708.7	370.3	3.4

Table 11. Mass, radioactivity, and decay heat of chlorides products after heat treatment and chlorination by MgCl2 and NH4Cl

		Mass (kg)	Radioactivity (kCi)	Decay heat (kW)
Actinide	ThCl ₄ , PaCl ₃ , UCl ₃ , UCl ₄ , NpCl ₃ , PuCl ₃ , AmCl ₃ , CmCl ₃	167.0	1,199.9	4.0
Alkali & Alkaline earth	-	0.0	0.0	0.0
Rare earth	YCl ₃ , LaCl ₃ , CeCl ₃ , PrCl ₃ , NdCl ₃ , PmCl ₃ , SmCl ₃ , EuCl ₂ , EuCl ₃ , GdCl ₃ , TbCl ₃ , DyCl ₃ , HoCl ₃ , ErCl ₃ , TmCl ₃ , YbCl ₃ , YbCl ₂ , LuCl ₃	123.6	436.6	1.9
Etc.	FeCl ₂ , NiCl ₂ , ZrCl ₄ , NbCl _{2.67} , NbCl _{3.13} , NbCl _{2.33} , NbCl ₃ , NbCl ₂ , NbCl ₄ , CdCl ₂ , InCl ₃ , InCl ₂ , InCl	155.4	0.07	0.00001
Sum		446.0	1,636.6	5.9

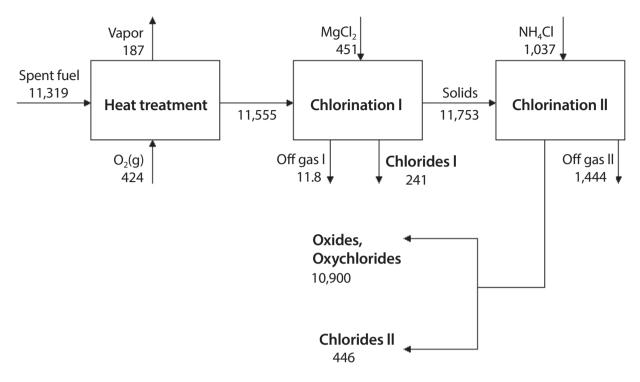


Fig. 4. Mass flow (kg) of heat treatment and chlorination by using MgCl₂ and NH₄Cl.

3.2 Sequential Chlorination

Additional NH₄Cl chlorination of oxides and oxychlorides produced from MgCl₂ chlorination was expected to further enhance the selective separation of highly radioactive actinide elements, rare earths, transition metals, and noble metals from actinide oxides composed primarily of uranium. Among the products of sequential application of MgCl₂ and NH₄Cl, the oxides and oxychloride are shown in Table 10, and the chlorides products are shown in Table 11. As with the use of MgCl₂ as a single chlorinating agent, the oxides and oxychlorides stream of sequential chlorination contains 191 kg of MgO produced by the reaction of MgCl₂ with oxides. Compared to the single chlorination agents of MgCl₂ and NH₄Cl, the masses of oxide and oxychloride in the sequential chlorination process are 92.6% and 99.5%, respectively. However, the radioactivity levels are only 18.4% and 29.8%, and the decay heat is only 36.8% and 44.0%, respectively. This indicates that sequential

chlorination can produce a stream with lower radioactivity and heat per unit mass compared to using a single chlorinating agent alone. Fig. 4 illustrates the mass flow when heat treatment, MgCl₂ chlorination, and NH₄Cl chlorination are performed sequentially. The total chloride amount resulting from the sequential chlorination of MgCl₂ and NH₄Cl is 651 kg, surpassing the 241 kg of chloride from MgCl₂ chlorination and 610 kg of chloride from NH₄Cl chlorination, indirectly indicating the additional chlorination achieved through sequential processes.

Due to Cl_2 's capability to completely separate metals from actinide oxides, Cl_2 chlorination was employed in conjunction with the oxide and oxychloride produced obtained from sequential MgCl₂ and NH₄Cl chlorination. Table 12 presents the oxide and oxychloride products resulting from the sequential application of MgCl₂, NH₄Cl, and Cl₂, while Table 13 displays the chloride products. The mass of the oxide and oxychloride products in the sequential chlorination process involving MgCl₂, NH₄Cl, and Cl₂

		Mass (kg)	Radioactivity (kCi)	Decay heat (kW)
Actinide	ThO ₂ , ThOCl ₂ , PaCl ₂ O, UO ₂ Cl ₂ , UOCl ₃ , NpO ₂ , NpOCl ₂ , PuO ₂ , AmOCl, AmO ₂ , CmOCl	13,325.9	82.9	1.9
Alkali & Alkaline earth	-	0.0	0.0	0.0
Rare earth	YOCl, LaOCl, CeO ₂ , Pr ₁₂ O ₂₂ , NdOCl, SmOCl, EuOCl, GdOCl, TbOCl, TbO ₂ , DyOCl, HoOCl, Ho ₂ O ₃ , ErOCl, TmOCl, YbOCl, LuOCl	9.1	241.2	1.3
Etc.	-	0.0	0.0	0.0
Sum		13,335.0	324.1	3.2

Table 12. Mass, radioactivity, and decay heat of oxides and oxychlorides products after heat treatment and chlorination by MgCl₂, NH₄Cl, and Cl₂

Table 13. Mass, radioactivity, and decay heat of chlorides products after heat treatment and chlorination by MgCl₂, NH₄Cl, and Cl₂

		Mass (kg)	Radioactivity (kCi)	Decay heat (kW)
Actinide	UCl4, UCl5, UCl6, NpCl4, NpCl5, PuCl3, PuCl4, AmCl3	3.9	29.2	0.06
Alkali & Alkaline earth	-	0.0	0.0	0.0
Rare earth	CeCl ₃ , PrCl ₃ , TbCl ₃ , HoCl ₃	0.0	0.01	0.0
Etc.	MoCl ₅ , MoCl ₄ , RuCl ₃ , RhCl ₃ , PdCl ₂ , AgCl, SnCl ₂	301.7	17.0	0.08
Sum		305.6	46.2	0.14

is 124.5% compared to sequential chlorination involving MgCl₂ and NH₄Cl, whereas the radioactivity is 87.5% and the decay heat is 94.7%. This implies that each additional chlorination step in the sequential process leads to a solid product stream with lower radioactivity and decay heat per unit mass. In the case of sequential MgCl₂ and NH₄Cl chlorination, the uranium in the oxides and oxychlorides stream exists as UO₂ and UOCl₂, respectively. However, in sequential MgCl₂, NH₄Cl, and Cl₂ chlorination, the uranium in the oxides and oxychlorides stream exists as UOCl2 and UOCl₃, resulting in a higher mass of oxide and oxychloride compared to MgCl₂ and NH₄Cl sequential chlorination. Fig. 5 illustrates the mass flow when heat treatment, MgCl₂, NH₄Cl, and Cl₂ chlorination are performed sequentially. The total chloride amount resulting from the sequential chlorination process involving MgCl₂, NH₄Cl, and Cl₂ is

993 kg, exceeding the total chloride amount obtained from sequential $MgCl_2$ and NH_4Cl chlorination (651 kg), indirectly indicating the progressive nature of chlorination as additional chlorination steps are implemented.

3.3 Comparison of Chlorination Effects

Table 14 presents the mass, radioactivity, and decay heat of the final solid products obtained through heat treatment and chlorination, allowing for a comparison of the effectiveness of the various chlorination processes examined in this study. Among the single chlorinating agents, NH₄Cl chlorination demonstrates the highest efficiency in separating materials of high radioactive and decay heat from the uranium-dominant solid product. When combining heat treatment with MgCl₂ chlorination, the resulting final solid

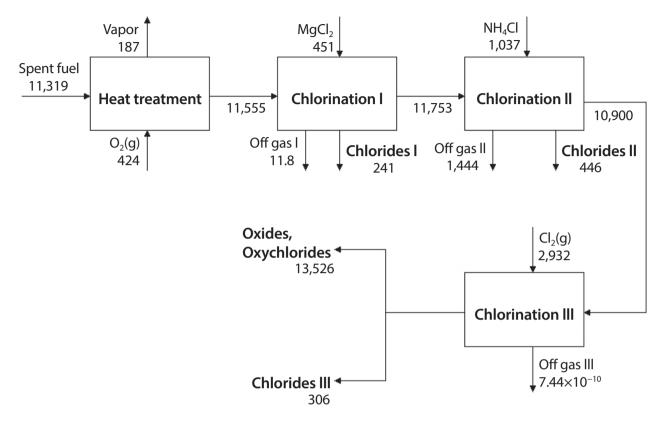


Fig. 5. Mass flow (kg) of heat treatment and chlorination by using MgCl₂, NH₄Cl, and Cl₂.

Table 14. Comparison of mass	(elemental basis), radioactivi	ty, and decay heat of solid	products after heat treatment and	l sequential chlorination
ruore i n comparison or mass	(elemental subis), factoreen i	if, and accuy near or bond	products arter near readment and	bequeinnar emormation

	Input	Heat treatment	Chlorination (MgCl ₂)	Chlorination (NH ₄ Cl)	Chlorination (Cl ₂)	Chlorination (MgCl ₂ \rightarrow NH ₄ Cl)	Chlorination $(MgCl_2 \rightarrow NH_4Cl_2)$ $\rightarrow Cl_2)$
Mass (kg)	10,002.7	9,835.7	9,694.1	9,495.0	9,482.9	9,445.4	9,313.6
Mass /Input mass (%)	100	98.3	96.9	94.9	94.8	94.4	93.1
Radioactivity (kCi)	6,336.4	4,756.7	2,007.2	1,241.8	2,260.0	370.3	324.1
Radioactivity /Input radioactivity (%)	100	75.1	31.7	19.6	35.7	5.8	5.1
Decay heat (kW)	20.8	18.1	9.2	7.7	10.3	3.4	3.2
Decay heat /Input decay heat (%)	100	87.0	44.2	37.0	49.5	16.3	15.4

-	• • • •			
		Chlorination (MgCl ₂)	Chlorination (MgCl ₂ \rightarrow NH ₄ Cl)	Chlorination $(MgCl_2 \rightarrow NH_4Cl \rightarrow Cl_2)$
Actinide	Oxides/Oxychlorides	1,312.1	112.1	82.9
	Chloride I	35.8	35.8	35.8
	Chloride II	0.0	1,199.9	1,199.9
	Chloride III	0.0	0.0	29.2
Alkali &	Oxides/Oxychlorides	0.0	0.0	0.0
Alkaline earth	Vapor from heat treatment	1,481.5	1,481.5	1,481.5
	Chloride I	2,238.9	2,238.9	2,238.9
	Chloride II	0.0	0.0	0.0
	Chloride III	0.0	0.0	0.0
Rare earth	Oxides/Oxychlorides	678.0	241.2	241.2
	Chloride I	475.0	475.0	475.0
	Chloride II	0.0	436.6	436.6
	Chloride III	0.0	0.0	0.01
Volatile	Solid product from heat treatment	0.0	0.0	0.0
	Vapor from heat treatment	98.0	98.0	98.0
Etc.	Oxides/Oxychlorides	17.1	17.0	0.0
	Vapor from heat treatment	0.2	0.2	0.2
	Chloride I	0.0004	0.0004	0.0004
	Chloride II	0.0	0.07	0.07
	Chloride III	0.0	0.0	17.0

Table 15. Comparison of radioactivity (kCi) distribution through heat treatment and sequential chlorination

product accounts for 96.9%, 31.7%, and 44.2% of the mass (elemental basis), radioactivity, and decay heat of the introduced spent fuel, respectively. On the other hand, combining heat treatment with sequential MgCl₂, NH₄Cl, and Cl₂ chlorination yields a final solid product representing 93.1%, 5.1%, and 15.4% of the mass (elemental basis), radioactivity, and decay heat of the introduced spent fuel, respectively. These results indicate the effectiveness of sequential chlorination in partitioning spent fuel, although the additional costs and operational challenges associated with multiple chlorination processes must be taken into accounts.

Table 15 shows how the radioactivity of each nuclide group is distributed to the mass flow as the chlorination progresses. Sequential chlorination proves capable of enhancing the purity of the uranium-dominant solid product while directing a majority of the highly radioactive actinide material towards the chlorides stream. Alkali and alkaline earth metals can be separated into vapor and chlorides streams. However, the chlorination-based separation of alkali and alkaline earth metals is a low-level separation accompanied by certain rare earths, transition metals, and precious metals. Notably, rare earths are present in both the oxides and oxychlorides stream and the chlorides stream, making it difficult to selective separation of them by chlorination.

The chlorides stream resulting from sequential chlorination exhibits a higher proportion of high radioactive material by mass compared to the initial spent fuel. Utilizing this chlorides stream as input for more selective separation processes such as pyroprocessing is expected to alleviate the processing burden, while precipitating and solidifying the chlorides enables the production of a solid waste form suitable for Deep Borehole Disposal in terms of diameter and height. This approach may eliminate the need to drill large-diameter boreholes, addressing one of the technical challenges of Deep Borehole Disposal.

4. Conclusion

Thermodynamic equilibrium calculations were employed to determine the chemical forms and quantities of 50 major nuclides in light water reactor spent fuel, which were transformed into oxides, oxychlorides, and chlorides through chlorination. Simulations were conducted to obtain mass flows for heat treatment and chlorination processes. Sequential chlorination using MgCl₂, NH₄Cl, and Cl₂ demonstrated enhanced selectivity in group separation of the spent fuel, surpassing the capabilities of a single chlorinating agent. These findings substantiate the potential of sequential chlorination as a pretreatment technology for disposal, in conjunction with Deep Borehole Disposal, or as a pretreatment technology to reduce the amount of material that needs to be processed in pyroprocessing.

Conflict of Interest

No potential conflict of interest relevant to this article was reported.

Acknowledgements

This work was supported by National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT, MSIT) (NRF-2021M2E3A1040057) (NRF-2023).

REFERENCES

- J.J. Laidler, J.E. Battles, W.E. Miller, J.P. Ackerman, and E.L. Carls, "Development of Pyroprocessing Technology", Prog. Nucl. Energy, 31(1-2), 131-140 (1997).
- [2] T. Inoue and L. Koch, "Development of Pyroprocessing and Its Future Direction", Nucl. Eng. Tech., 40(3), 183-190 (2008).
- [3] K.C. Song, H. Lee, J.M. Hur, J.G. Kim, D.H. Ahn, and Y.Z. Cho, "Status of Pyroprocessing Technology Development in Korea", Nucl. Eng. Technol., 42(2), 131-144 (2010).
- [4] H. Lee, G.I. Park, J.W. Lee, K.H. Kang, J.M. Hur, J.G. Kim, S. Paek, I.T. Kim, and I.J. Cho, "Current Status of Pyroprocessing Development at KAERI", Sci. Technol. Nucl. Install., 2013, 343492 (2013).
- [5] International Atomic Energy Agency, Status and Trends in Pyroprocessing of Spent Nuclear Fuels, IAEA TEC-DOC Series, IAEA-TECDOC-1967 (2021).
- [6] E.D. Collins, T.D. Hylton, G.D. DelCul, B.B. Spencer, R.D. Hunt, and J.A. Johnson. Completion of a Chlorination Test Using 250 Grams of High-Burnup Used Fuel Cladding From a North Anna Pressurized Water Reactor, Oak Ridge National Laboratory Report, ORNL/ LTR-2017/327 (2018).
- [7] S.K. Lee, S. Paek, J.H. Lee, Y.H. Kim, E.Y. Choi, and C.H. Lee, "Chemical Behavior of Grey Oxide Phases in MgCl₂-Based Molten Salts for Sr Nuclide Separation", J. Nucl. Mater., 572, 154076 (2022).
- [8] Y.L. Liu, L.X. Luo, N. Liu, B.L. Yao, K. Liu, L.Y. Yuan, Z.F. Chai, and W.Q. Shi, "A Particularly Simple NH₄Cl-Based Method for the Dissolution of UO₂ and Rare Earth Oxides in LiCl-KCl Melt Under Air Atmosphere", J. Nucl. Mater., 508, 63-73 (2018).
- [9] D.S. Yoon, S. Paek, S.K. Lee, J.H. Lee, and C.H. Lee, "Chlorination of TRU/RE/SrO_x in Oxide Spent Nuclear Fuel Using Ammonium Chloride as a Chlorinating Agent", J. Nucl. Fuel Cycle Waste Technol., 20(2), 193-207 (2022).

- [10] Y.S. Yang, Y.H. Kang, and H.K. Lee, "Estimation of Optimum Experimental Parameters in Chlorination of UO₂ With Cl₂ Gas and Carbon for UCl₄", Mater. Chem. Phys., 50(3), 243-247 (1997).
- [11] Y. Sakamura, T. Inoue, T. Iwai, and H. Moriyama, "Chlorination of UO₂, PuO₂ and Rare Earth Oxides Using ZrCl₄ in LiCl-KCl Eutectic Melt", J. Nucl. Mater., 340(1), 39-51 (2005).
- [12] S. Kitawaki, T. Nagai, and N. Sato, "Chlorination of Uranium Oxides With CCl₄ Using a Mechanochemical Method", J. Nucl. Mater., 439(1-3), 212-216 (2013).
- [13] G. Bracke, F. Charlier, A. Liebscher, F.R. Schilling, and T. Röckel, "About the Possibility of Disposal of HLRW in Deep Boreholes in Germany", Geosciences, 7(3), 58 (2017).
- [14] B. Jeon, S. Choi, S. Lee, and S. Jeon, "A Conceptual Study for Deep Borehole Disposal of High Level Radioactive Waste in Korea", Tunn. Undergr. Space, 29(2), 75-88 (2019).
- [15] T. Inoue and T. Koyama, "An Overview of CRIEPI Pyroprocessing Activities", Proc. of the Actinide and Fission Products Partitioning and Transmutation: Ninth Information Exchange Meeting, 187-196, September 25-29, 2006, Nimes, France.
- [16] B.D. Hanson. The Burnup Dependence of Light Water Reactor Spent Fuel Oxidation, Pacific Northwest National Laboratory Report, PNNL-11929 (1998).
- [17] J.J. Park. Development of Voloxidation Process for Treatment of LWR Spent Fuel, Korea Atomic Energy Research Institute Report, KAERI/RR-2840 (2006).
- [18] HSC Chemistry 6.0 User's Guide, Version: HSC Chemistry 6.0, Outotec Research Oy, Finland (2006).