• Title/Summary/Keyword: Soldering

Search Result 392, Processing Time 0.025 seconds

Multi-Layer Printed Wiring Board with Built-In Soldering Heater and 3D Implementation of Dynamically Reconfigurable Highly Parallel Processors

  • Fujika, Yoshichika;Lee, Doo-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.104.2-104
    • /
    • 2001
  • In the intelligent integrated systems, the delay time must be reduced using highly parallel processors, as well as high throughput performance. In this paper, we propose a new concept for building 3D highly parallel processors using multi-layer printed wiring boards with built-in soldering heater (BISH-PWB). The proposed BISH is realized with the long and narrow cupper wiring pattern on the internal layer in the terminal pattern area. Based on the linearity of the cupper resistance vs. temperature, we can measure the BISH, temperature and its calorific value from the heater voltage and current measurements. If we provide the BISH temperature control systems for each BISH, selective multi-point soldering can be realized with same ...

  • PDF

Development of Vision Technology for the Test of Soldering and Pattern Recognition of Camera Back Cover (카메라 Back Cover의 형상인식 및 납땜 검사용 Vision 기술 개발)

  • 장영희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.119-124
    • /
    • 1999
  • This paper presents new approach to technology pattern recognition of camera back cover and test of soldering. In real-time implementing of pattern recognition camera back cover and test of soldering, the MVB-03 vision board has been used. Image can be captured from standard CCD monochrome camera in resolutions up to 640$\times$480 pixels. Various options re available for color cameras, a synchronous camera reset, and linescan cameras. Image processing os performed using Texas Instruments TMS320C31 digital signal processors. Image display is via a standard composite video monitor and supports non-destructive color overlay. System processing is possible using c30 machine code. Application software can be written in Borland C++ or Visual C++

  • PDF

A study of the electrical characteristics changes of PV cell at high temperature (태양전지 셀의 고온에 의한 전기적 특성 변화 연구)

  • Jung, Tae-Hee;Shin, Jun-Oh;Kim, Tae-Bum;Kang, Gi-Hwan;Ahn, Hyung-Keun;Han, Deuk-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.387-389
    • /
    • 2009
  • PV module is manufactured by several steps such as cell sort, tabbing & string, lay-up, lamination processes. In oder to manufacture PV module, solar cell must be placed in high temperature. Soldering Process in high temperature is important because it directly influences electric output performance changes of solar cell in solar cell module. We consider applying momentary high temperature, while soldering solar cell, and expect change electric characteristics of PV module. In this paper, we measure electric output characteristics of solar cells after those are applied with high temperature changes for two seconds. From these results, we confirm with application of high temperature, $I_{sc}$ increase and $V_{oc}$ slightly decreases.

  • PDF

A Study of Cervical Margin Distortion in Preheating Method during Soldering (관교의치(冠橋義齒) 납착시 Preheating 방법에 따른 치경부(齒經部) 변록의 적합도(適合度)에 관한 실험적 연구)

  • Kim, Won-Tai
    • Journal of Technologic Dentistry
    • /
    • v.6 no.1
    • /
    • pp.11-14
    • /
    • 1984
  • The auther performed this experimental study on cervical margin distortion in preheating method during soldering. 1. In soldering methods, the method using the furnace has less distortion than the method using open-flame and longer the bridge spon, the larger the distortions. 2. Table Ⅰ Showed that buccal margin, lingual margin, mesial margin and distal margin had respectively 0.01mm, 0.02mm, 0.03mm, 0.03mm closer adaptation in 3 unit bridge than in 5 unit bridges. 3. Table II showed that buccal margin, lingual margin, mesial margin and distal margin had respectively 0.06mm, 0.07mm, 0.11mm, 0.05mm closer adaptation in 3 unit bridge than in 5 unit bridges.

  • PDF

Productivity and Task Difficulty Improvement of PCB Soldering Process by Changing Work Interface (PCB Soldering 공정의 작업 인터페이스 변경에 따른 작업난이도 및 생산성 향상)

  • Lee, Sung-Koon;Park, Peom
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.6
    • /
    • pp.943-949
    • /
    • 2010
  • When PCB soldering is performed with microscope due to the electronic components' microminiaturization, workers' awkward upper body postures and difficulties being in focus among lens, object and eyes are one of reasons for productivity decline. The object of this study is to investigate the level of difficulties of work and the extent of productivity improvement by changing work interfaces from the work using microscope to the work using LCD monitor. Independent variables was usage of microscope and image system and dependent variables were upper body segments including neck, shoulder, back, and waist, task convenience and eye fatigue. The Visual Analogue Scale (10cm) was used for questionnaire and one way ANOVA (two levels) and two sample t-test were conducted. In addition, RULA rating was conducted for working postures. The result showed that interface changes of LCD monitor, suggested by productivity comparison per one Man Hour, highly contributed to work convenience and productivity improvement.

Temperature Uniformity Control of Wafer During Vacuum Soldering Process (진공 솔더링 공정 중 웨이퍼 온도균일화 제어)

  • Kang, Min Sig;Jee, Won Ho;Yoon, Wo Hyun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.2
    • /
    • pp.63-69
    • /
    • 2012
  • As decreasing size of chips, the need of wafer level packaging is increased in semi-conductor and display industries. Temperature uniformity is a crucial factor in vacuum soldering process to guarantee quality of bonding between chips and wafer. In this paper, a stepwise iterative algorithm has been suggested to obtain output profile of each heat source. Since this algorithm is based on open-loop stepwise iterative experimental technique, it is easier to implement and cost effective than real time feedback controls. Along with some experiments, it was shown that the suggested algorithm can remarkably improve temperature uniformity of wafer during whole heating process compared with the ordinary manual trial-and error method.

Sensitivity Analysis on the Thermal Response of Electronic Components during Infrared Reflow Soldering (적외선 리플로 솔더링시 전자부품의 열적반응 민감도 분석)

  • 손영석;신지영
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.1
    • /
    • pp.1-9
    • /
    • 2002
  • The thermal response of electronic components during infrared reflow soldering is studied by a two-dimensional numerical model. The convective, radiative and conduction heat transfer within the reflow oven as well as within the card assembly are simulated. Parametric study is also performed to determine the thermal response of electronic components to various conditions such as conveyor velocities, exhaust velocities and emissivities. The results of this study can be used in selecting the oven operating conditions to ensure proper solder melting and minimization of thermally induced card assembly stresses.

A Study on the Element Technology for PV Module Manufacturing (태양전지모듈 제조를 위한 요소기술연구)

  • Kang, Gi-Hwan;Yu, Gwon-Jong;Park, Kyung-Un;Ahn, Hyung-Keun;Han, Deuk-Young
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1365-1367
    • /
    • 2003
  • In this paper, element technologies such as soldering. arrangement and lamination processes for photovoltaic module manufacture were examined and described as main processes. Especially solder paste and temperature condition in soldering process, loss factor in arrangement process and process conditions in lamination process are investigated to minimize the electrical loss. As a results, temperature condition in soldering process was found to be critical to contact resistance of electrode and life-time. Productivity of the process decreases dramatically by physical damage during arrangement process. Pressure level and press condition of upper chamber in lamination process were important parameters for the reliability. According to the test result of photovoltaic module, electrical properties dropped about $5{\sim}25%$ after 5 years.

  • PDF

Design of Fuzzy PI Controllers for the Temperature Control of Soldering Systems (솔더링 시스템의 온도 제어를 위한 퍼지 PI 제어기 설계)

  • Oh, Kabsuk;Kang, Geuntaek
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.325-333
    • /
    • 2016
  • This paper proposes controller design algorithms for a ceramic soldering iron temperature control system, and reports their effectiveness in a control experiment. Because the responses of the ceramic soldering iron temperature to the control input are non-linear and very slow, precise modeling and controller design is difficult. In this study, the temperature characteristics of a ceramic soldering iron are represented by TSK fuzzy models consisting of TSK fuzzy rules. In the fuzzy rules, the premise variable is the control input and the consequences are the transfer functions. The transfer functions in the fuzzy model were obtained from the step input responses. As the responses of the ceramic soldering iron temperature are very slow, it is difficult to obtain the complete step input responses. This paper proposes a genetic algorithm to obtain the transfer functions from an incomplete step input responses, and showed its effectiveness in examples. This paper also reports a fuzzy controller design method from the TSK fuzzy model and examples. The proposed methods were applied to the temperature control experiments of ceramic iron. The TSK fuzzy model consisted of 7 TSK fuzzy rules, and the consequences were PI controllers. The experimental results of the proposed fuzzy PI controller were superior to the linear controller and were as good as in previous studies using a fuzzy PID controller.

A Study on The Solderability of Micro-BGA of Sn-3.5Ag-0.7Cu (Sn-3.5Ag-0.7Cu Micro-BCA의 Soldering성 연구)

  • ;;;;Kozo Jujimoto
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.3
    • /
    • pp.55-61
    • /
    • 2000
  • Sn-37Pb and Sn-3.5Ag-0.7Cu solder balls of 0.3 mm diameter were reflow soldered with the variation of soldering peak temperature and conveyer speed of reflow machine. The peak temperatures far soldering were changed in the range of 220~$240^{\circ}C$ for Sn-37Pb and 230~$260^{\circ}C$ for Sn-3.5Ag-0.7Cu. As the results of experiments, optimum soldering condition for Sn-37Pb was $230^{\circ}C$ of soldering temp., 0.7~0.8 m/min of conveyer speed. The optimum condition for the Sn-3.5Ag-0.7Cu was $250^{\circ}C$ and 0.6 m/min. The maximum shear strength for the soldered joints of Sn-37Pb was 555 gf and of Sn-3.5Ag-0.7Cu was 617 gf. Thickness of the intermetallic compound Cu6Sn5 on the soldered interface was 1.13~1.45 $\mu\textrm{m}$ for Sn-37Pb and 2.5~4.3 $\mu\textrm{m}$ for Sn-3.5Ag-0.7Cu.

  • PDF