• Title/Summary/Keyword: Soldering

Search Result 391, Processing Time 0.023 seconds

Effect of Shearing Speed on High Speed Shear Properties of Sn1.0Ag0.5Cu Solder Bump on Various UBM's (다양한 UBM층상의 Sn0Ag0.5Cu 솔더 범프의 고속 전단특성에 미치는 전단속도의 영향)

  • Lee, Wang-Gu;Jung, Jae Pil
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.3
    • /
    • pp.237-242
    • /
    • 2011
  • The effect of shearing speed on the shear force and energy of Sn-0Ag-0.5Cu solder ball was investigated. Various UBM (under bump metallurgy)'s on Cu pads were used such as ENEPIG (Electroless Nickel, Electroless Palladium, Immersion Gold; Ni/Pd/Au), ENIG (Electroless Nickel, Immersion Gold; Ni/Au), OSP (Organic Solderability Preservative). To fabricate a shear test specimen, a solder ball, $300{\mu}m$ in diameter, was soldered on a pad of FR4 PCB (printed circuit board) by a reflow soldering machine at $245^{\circ}C$. The solder bump on the PCB was shear tested by changing the shearing speed from 0.01 m/s to 3.0 m/s. As experimental results, the shear force increased with a shearing speed of up to 0.6 m/s for the ENIG and the OSP pads, and up to 0 m/s for the ENEPIG pad. The shear energy increased with a shearing speed up to 0.3 m/s for the ENIG and the OSP pads, and up to 0.6 m/s for the ENEPIG pad. With a high shear speed of over 0 m/s, the ENEPIG showed a higher shear force and energy than those of the ENIG and OSP. The fracture surfaces of the shear tested specimens were analyzed, and the fracture modes were found to have closer relationship with the shear energy than the shear force.

A Study on Growth of Intermetallic Compounds Layer of Photovoltaic Module Interconnected by Multi-wires under Damp-heat Conditions (고온고습시험에 의한 멀티 와이어 PV 모듈의 금속 간 화합물 층의 성장에 관한 연구)

  • Moon, Ji Yeon;Cho, Seong Hyeon;Son, Hyoung Jin;Jun, Da Yeong;Kim, Sung Hyun
    • Current Photovoltaic Research
    • /
    • v.8 no.4
    • /
    • pp.124-128
    • /
    • 2020
  • Output power of photovoltaic (PV) modules installed outdoors decreases every year due to environmental conditions such as temperature, humidity, and ultraviolet irradiations. In order to promote the installation of PV modules, the reliability must be guaranteed. One of the important factors affecting reliability is intermetallic compounds (IMC) layer formed in ribbon solder joint. For this reason, various studies on soldering properties between the ribbon and cell have been performed to solve the reliability deterioration caused by excessive growth of the IMC layer. However, the IMC layer of the PV module interconnected by multi-wires has been studied less than using the ribbon. It is necessary to study soldering characteristics of the multi-wire module for improvement of its reliability. In this study, we analyzed the growth of IMC layer of the PV module with multi-wire and the degradation of output power through damp-heat test. The fabricated modules were exposed to damp-heat conditions (85 ºC and 85 % relative humidity) for 1000 hours and the output powers of the modules before and after the damp-heat test were measured. Then, the process of dissolving ethylene vinyl acetate (EVA) as an encapsulant of the modules was performed to observe the IMC layer. The growth of IMC layer was evaluated using OM and FE-SEM for cross-sectional analysis and EDS for elemental mapping. Based on these results, we investigated the correlation between the IMC layer and output power of modules.

Trends of Packaging and Micro-joining Technologies for Car Electronics (자동차용 전장품의 패키징 및 마이크로 접합기술 동향)

  • Lee, Gyeong Ah;Cho, Do Hoon;Sri Harini, Rajendran;Jung, Jae Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.1
    • /
    • pp.7-16
    • /
    • 2022
  • Recently, the automobile industry is rapidly changing due to technological development. Next-generation cars with high technology and new functions are on the market. It is essential to develop electronic devices to meet the condition of next-generation cars. In this study, the authors have reviewed recent trends of automotive electronics and packaging technology. Automotive electronics are used in harsh environments compared with other industries. Thus, it is important to improve the reliability of device junctions that directly affect electronics performance. Soldering, TLP (transient liquid phase bonding), and sintering are introduced for the bonding methods in car electronics.

A Study on Correlation between Busbar Electrodes of Heterojunction Technology Solar Cells and the Peel Strength (실리콘 이종접합 태양전지의 버스바 전극 두께와 접합강도의 상관관계)

  • Da Yeong Jun;Jiyeon Moon;Godeung Park;Zulmandakh Otgongerel;Hyeryeong Nam;Oryeon Kwon;Hyunsoo Lim;Sung Hyun Kim
    • Current Photovoltaic Research
    • /
    • v.11 no.2
    • /
    • pp.44-48
    • /
    • 2023
  • In heterojunction technology (HJT) solar cells, low-temperature curing paste is used because the passivation layer deteriorates at high temperatures of 200℃ or higher. However, manufacturing HJT photovoltaic (PV) modules is challenging due to the weak peel strength between busbar electrodes and cells after soldering process. For this issue, the electrode thicknesses of the busbars of the HJT solar cell were analyzed, and the peel strengths between electrodes and wires were measured after soldering using an infrared (IR) lamp. As a result, the electrodes printed by the screen printing method had a difference in thickness due to screen mask. Also, as the thickness of the electrode increased, the peel strength of the wire increased.

Optimization of Soldering Process of Sn-3.0Ag-0.5Cu and Sn-1.0Ag-0.7Cu-1.6Bi-0.2In Alloys for Solar Combiner Junction Box Module (태양광 접속함 정션박스 모듈 적용을 위한 Sn-3.0Ag-0.5Cu 및 Sn-1.0Ag-0.7Cu-1.6Bi-0.2In 솔더링의 공정최적화)

  • Lee, Byung-Suk;Oh, Chul-Min;Kwak, Hyun;Kim, Tae-Woo;Yun, Heui-Bog;Yoon, Jeong-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.3
    • /
    • pp.13-19
    • /
    • 2018
  • The soldering property of Pb-containing solder(Sn-Pb) and Pb-free solders(Sn-3.0Ag-0.5Cu and Sn-1.0Ag-0.7Cu-1.6Bi-0.2In) for solar combiner box module was compared. The solar combiner box module was composed of voltage and current detecting modules, diode modules, and other modules. In this study, solder paste printability, printing shape inspection, solder joint property, X-ray inspection, and shear force measurements were conducted. For optimization of Pb-free soldering process, step 1 and 2 were divided. In the step 1 process, the printability of Pb-containing and Pb-free solder alloys were estimated by using printing inspector. Then, the relationship between void percentages and shear force has been estimated. Overall, the property of Pb-containing solder was better than two Pb-free solders. In the step 2 process, the property of reflow soldering for the Pb-free solders was evaluated with different reflow peak temperatures. As the peak temperature of the reflow process gradually increased, the void percentage decreased by 2 to 4%, but the shear force did not significantly depend on the reflow peak temperature by a deviation of about 0.5 kgf. Among different surface finishes on PCB, ENIG surface finish was better than OSP and Pb-free solder surface finishes in terms of shear force. In the thermal shock reliability test of the solar combiner box module with a Pb-free solder and OSP surface finish, the change rate of electrical property of the module was almost unchanged within a 0.3% range and the module had a relatively good electrical property after 500 thermal shock cycles.

Characteristics of Ultrasonic Test on Interfaces of Adhesively Bonded Components (접착부재의 계면에 대한 초음파 탐상 특성)

  • 정남용;박성일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.182-189
    • /
    • 2004
  • The application of adhesively bonded components is increasing in various industries such as automobile, aircraft, IC packages, and soldering techniques. In spite of such wide application in adhesively bonded components, nondestructive test techniques applying to adhesively bonded components have not been clearly established yet. In this paper, characteristics of ultrasonic test on interfaces of adhesively bonded components have been investigated by calculating transmission coefficient theoretically and experimentally. From the experimental results, the optimum conditions to establish frequencies for adhesively bonded homogeneous and dissimilar components are 4∼6 MHz and 2∼4 MHz, respectively.

Effect of External Reinforcement on Stress/strain Characteristics of Critical Current in Ag Alloy Sheathed Bi-2212 Superconducting Tapes (Bi-2212 초전도 테이프에서 임계전류의 응력/변형률 특성에 미쳐는 외부강화의 영향)

  • ;K. Katagiri
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.1
    • /
    • pp.6-10
    • /
    • 2001
  • Stress/stram dependencies of the critical current $I_c$ in AgMgNi sheathed multifilamentary Bi(2212) superconducting tapes were evaluated at 77K, 0T. The external reinforcement was accomplished by soldering Ag-Mg tapes to sin91e side or both sides of the sample. With the external reinforcement. the strength of tapes increased but $I_c$, decreased The $I_c$, degradation characteristic according to the external reinforcement was improved markedly in terms of the stress although it appeared less rectal.table on the basis of the strain. Effects of external reinforcement were discussed in a viewpoint of monitoring sensitivity of cracking in superconducting filaments by considering n-value representing the transport behavior of the current. It is closely associated with the location of them relative to the voltage-monitoring region in the tape.

  • PDF

A Cost-Effective 40-Gb/s ROSA Module Employing Compact TO-CAN Package

  • Kang, Sae-Kyoung;Lee, Joon Ki;Huh, Joon Young;Lee, Jyung Chan;Kim, Kwangjoon;Lee, Jonghyun
    • ETRI Journal
    • /
    • v.35 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • In this paper, we present an implemented serial 40-Gb/s receiver optical subassembly (ROSA) module by employing a proposed TO-CAN package and flexible printed circuit board (FPCB). The TO-CAN package employs an L-shaped metal support to provide a straight line signal path between the TO-CAN package and the FPCB. In addition, the FPCB incorporates a signal line with an open stub to alleviate signal distortion owing to an impedance mismatch generated from the soldering pad attached to the main circuit board. The receiver sensitivity of the ROSA module measures below -9 dBm for 40 Gb/s at an extinction ratio of 7 dB and a bit error rate of $10^{-12}$.

COG(chip on glass) 구조에서 유리를 투과하는 레이저 조사 방식에 의한 area array type 패키지의 마운팅 공정

  • 이종현;김원용;이용호;김영석
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.07a
    • /
    • pp.119-126
    • /
    • 2001
  • Chip-on-glass(COG) mounting of area array electronic packages was attempted by heating the rear surface of a contact pad film deposited on a glass substrate. The pads consisted of an adhesion(i.e. Cr or Ti) and a top coating layer(i.e. Ni or Cu) was heated by an UV laser beam transmitted through the glass substrate. The laser energy absorbed on the pad raised the temperature of a solder ball which is in physical contact with the pad, forming a reflowed solder bump. The effects of the adhesion and top coating layer on the laser reflow soldering were studied by measuring temperature profile of the ball during the laser heating process. The results were discussed based on the measurement of reflectivity of the adhesion layer. In addition, the microstructures of solder bumps and their mechanical properties were examined.

  • PDF

A Review of Ag Paste Bonding for Automotive Power Device Packaging (자동차용 파워 모듈 패키징의 은 소재를 이용한 접합 기술)

  • Roh, Myong-Hoon;Nishikawa, Hiroshi;Jung, Jae-Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.15-23
    • /
    • 2015
  • Lead-free bonding has attracted significant attention for automotive power device packaging due to the upcoming environmental regulations. Silver (Ag) is one of the prime candidates for alternative of high Pb soldering owing to its superior electrical and thermal conductivity, low temperature sinterability, and high melting temperature after bonding. In this paper, the bonding technology by Ag paste was introduced. We classified into two Ag paste bonding according to applied pressure, and each bonding described in detail including recent studies.