• Title/Summary/Keyword: Solar-weighted reflectance

Search Result 6, Processing Time 0.025 seconds

Optimization of Porous Silicon Reflectance for Multicrystalline Silicon Solar Cells (다공성 실리콘 반사방지막의 최적 반사율을 적용한 다결정 실리콘 태양전지)

  • Kwon, J.H.;Kim, D.S.;Lee, S.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.146-149
    • /
    • 2004
  • Porous silicon(PS) as an excellent light diffuser can be used as an antireflection layer without other antireflection coating(ARC) materials. PS layers were obtained by electrochemical etching(ECE) anodization of silicon wafers in hydrofluoric acid/ethanol/de-ionized(DI) water solution($HF/EtOH/H_2O$). This technique is based on the selective removal of Si atoms from the sample surface forming a layer of PS with adjustable optical, electrical, and mechanical properties. A PS layer with optimal ARC characteristics was obtained in charge density (Q) of 5.2 $C/cm^2$. The weighted reflectance is reduced from 33 % to 4 % in the wavelength between 400 and 1000 nm. The weighted reflectance with optimized PS layers is much less than that obtained with a commercial SiNx ARC on a potassium hydroxide(KOH) pre-textured multi-crystalline silicon(mc-Si) surface.

  • PDF

Improved Antireflection Property of Si by Au Nanoparticle-Assisted Electrochemical Etching (금 나노입자 촉매를 이용한 단결정 실리콘의 전기화학적 식각을 통한 무반사 특성 개선)

  • Ko, Yeong-Hwan;Joo, Dong-Hyuk;Yu, Jae-Su
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.2
    • /
    • pp.99-105
    • /
    • 2012
  • We fabricated the textured silicon (Si) surface on Si substrates by the electrochemical etching using gold (Au) nanoparticle catalysts. The antireflective property of the fabricated Si nanostructures was improved. The Au nanoparticles of ~20-150 nm were formed by the rapid thermal annealing using thermally evaporated Au films on Si. In the chemical etching, the aqueous solution containing $H_2O_2$ and HF was used. In order to investigate the effect of electrochemical etching on the etching depth and reflectance characteristics, the sample was immersed in the aqueous etching solution for 1 min with and without applied cathodic voltages of -1 V and -2 V. As a result, the solar weighted reflectance, i.e., the averaged reflectance with considering solar spectrum (air mass 1.5), could be efficiently reduced for the electrochemically etched Si by applying the cathodic voltage of -2 V, which is expected to be useful for Si solar cell applications.

Potential of chemical rounding for the performance enhancement of pyramid textured p-type emitters and bifacial n-PERT Si cells

  • Song, Inseol;Lee, Hyunju;Lee, Sang-Won;Bae, Soohyun;Hyun, Ji Yeon;Kang, Yoonmook;Lee, Hae-Seok;Ohshita, Yoshio;Ogurad, Atsushi;Kim, Donghwan
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1268-1274
    • /
    • 2018
  • We have investigated the effects of chemical rounding (CR) on the surface passivation and/or antireflection performance of $AlO_{x^-}$ and $AlO_x/SiN_x:H$ stack-passivated pyramid textured $p^+$-emitters with two different boron doping concentrations, and on the performance of bifacial n-PERT Si solar cells with a front pyramid textured $p^+$-emitter. From experimental results, we found that chemical rounding markedly enhances the passivation performance of $AlO_x$ layers on pyramid textured $p^+$-emitters, and the level of performance enhancement strongly depends on boron doping concentration. Meanwhile, chemical rounding increases solar-weighted reflectance ($R_{SW}$) from ~2.5 to ~3.7% for the $AlO_x/SiN_x:H$ stack-passivated pyramid textured $p^+$-emitters after 200-sec chemical rounding. Consequently, compared to non-rounded bifacial n-PERT Si cells, the short circuit current density Jsc of 200-sec-rounded bifacial n-PERT Si cells with ~60 and ${\sim}100{\Omega}/sq$ $p^+$-emitters is reduced by 0.8 and $0.6mA/cm^2$, respectively under front $p^+$-emitter side illumination. However, the loss in the short circuit current density Jsc is fully offset by the increased fill factor FF by 0.8 and 1.5% for the 200-sec-rounded cells with ~60 and ${\im}100{\Omega}/sq$ $p^+$-emitters, respectively. In particular, the cell efficiency of the 200-sec-rounded cells with a ${\sim}100{\Omega}/sq$ $p^+$-emitter is enhanced as a result, compared to that of the non-rounded cells. Based on our results, it could be expected that the cell efficiency of bifacial n-PERT Si cells would be improved without additional complicated and costly processes if chemical rounding and boron doping processes can be properly optimized.

Study of Low Reflectance and RF Frequency by Rie Surface Texture Process in Multi Crystall Silicon Solar Cells (공정가스와 RF 주파수에 따른 웨이퍼 표면 텍스쳐 처리 공정에서 저반사율에 관한 연구)

  • Yun, Myoung-Soo;Hyun, Deoc-Hwan;Jin, Beop-Jong;Choi, Jong-Young;Kim, Joung-Sik;Kang, Hyoung-Dong;Yi, Jun-Sin;Kwon, Gi-Chung
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.2
    • /
    • pp.114-120
    • /
    • 2010
  • Conventional surface texturing in crystalline silicon solar cell have been use wet texturing by Alkali or Acid solution. But conventional wet texturing has the serious issue of wafer breakage by large consumption of wafer in wet solution and can not obtain the reflectance below 10% in multi crystalline silicon. Therefore it is focusing on RIE texturing, one method of dry etching. We developed large scale plasma RIE (Reactive Ion Etching) equipment which can accommodate 144 wafers (125 mm) in tray in order to provide surface texturing on the silicon wafer surface. Reflectance was controllable from 3% to 20% in crystalline silicon depending on the texture shape and height. We have achieved excellent reflectance below 4% on the weighted average (300~1,100 nm) in multi crystalline silicon using plasma texturing with gas mixture ratio such as $SF_6$, $Cl_2$, and $O_2$. The texture shape and height on the silicon wafer surface have an effect on gas chemistry, etching time, RF frequency, and so on. Excellent conversion efficiency of 16.1% is obtained in multi crystalline silicon by RIE process. In order to know the influence of RF frequency with 2 MHz and 13.56 MHz, texturing shape and conversion efficiency are compared and discussed mutually using RIE technology.

The Development of the Simple SHGC Calculation Method in Case of a Exterior Venetian Blind Using the Simulation (시뮬레이션을 이용한 외부 베네시안 블라인드의 약식 SHGC 계산법 개발)

  • Eom, Jae-Yong;Lee, Chung-Kook;Jang, Weol-Sang;Choi, Won-Ki
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.2
    • /
    • pp.73-83
    • /
    • 2015
  • When it comes to these buildings for business use, cooling load during summertime was reported to have great importance which, as a result, impressively increased interest in Solar Heat Gain Coefficient (SHGC). Such SHGC is considered to be lowered with the help of colors and functions of glass itself, internal shading devices, insulation films and others but basically, these external shading devices for initial blocking that would not allow solar heat to come in from outside the buildings are determined to be most effective. Of many different external shading devices, this thesis conducted an analysis on Exterior Venetian Blind. As for vertical shading devices, previous researches already calculated SHGC conveniently using concepts of sky-opening ratios. However in terms of the Venetian Blind, such correlation is not possibly applied. In light of that, in order to extract a valid correlation, this study first introduced a concept called shape factor, which would use the breadth and a space of a shade, before carrying out the analysis. As a consequence, the concept helped this study to find a very similar correlation. Results of the analysis are summarized as follows. (1) Regarding SHGC depending on the surface reflectance of a shade, an average of 2% error is observed and yet, the figure can always be ignored when it comes to a simple calculation. (2) As for SHGC of each bearing, this study noticed deviations of 4% or less and in the end, it is confirmed that extraction can be achieved with no more than one correlation formula. (3) When only the shape factor and nothing else is used for finding a correlation formula, the formula with a deviation of approximately 5% or less is what one would expect. (4) Since the study observed slight differences in bearings depending on ranges of the shape factors, it needed to extract a weighted value of each bearing, and learned that the smaller the shape factor, the wider the range of a weighted value. The study now suggests that a follow-up research to extract a simple calculation formula by dealing with all these various inclined angles of shade, solar radiation conditions of each region (the ratio of diffuse radiation to direct radiation and others) as well as seasonal features should be carried out.

Evaluation of Rededge-M Camera for Water Color Observation after Image Preprocessing (영상 전처리 수행을 통한 Rededge-M 카메라의 수색 관측에의 활용성 검토)

  • Kim, Wonkook;Roh, Sang-Hyun;Moon, Yongseon;Jung, Sunghun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.3
    • /
    • pp.167-175
    • /
    • 2019
  • Water color analysis allows non-destructive estimation of abundance of optically active water constituents in the water body. Recently, there have been increasing needs for light-weighted multispectral cameras that can be integrated with low altitude unmanned platforms such as drones, autonomous vehicles, and heli-kites, for the water color analysis by spectroradiometers. This study performs the preprocessing of the Micasense Rededge-M camera which recently receives a growing attention from the earth observation community for its handiness and applicability for local environment monitoring, and investigates the applicability of Rededge-M data for water color analysis. The Vignette correction and the band alignment were conducted for the radiometric image data from Rededge-M, and the sky, water, and solar radiation essential for the water color analysis, and the resultant remote sensing reflectance were validated with an independent hyperspectral instrument, TriOS RAMSES. The experiment shows that Rededge-M generally satisfies the basic performance criteria for water color analysis, although noticeable differences are observed in the blue (475 nm) and the near-infrared (840 nm) band compared with RAMSES.