Browse > Article
http://dx.doi.org/10.5757/JKVS.2012.21.2.99

Improved Antireflection Property of Si by Au Nanoparticle-Assisted Electrochemical Etching  

Ko, Yeong-Hwan (Department of Electronics and Radio Engineering, Kyung Hee University)
Joo, Dong-Hyuk (Department of Electronics and Radio Engineering, Kyung Hee University)
Yu, Jae-Su (Department of Electronics and Radio Engineering, Kyung Hee University)
Publication Information
Journal of the Korean Vacuum Society / v.21, no.2, 2012 , pp. 99-105 More about this Journal
Abstract
We fabricated the textured silicon (Si) surface on Si substrates by the electrochemical etching using gold (Au) nanoparticle catalysts. The antireflective property of the fabricated Si nanostructures was improved. The Au nanoparticles of ~20-150 nm were formed by the rapid thermal annealing using thermally evaporated Au films on Si. In the chemical etching, the aqueous solution containing $H_2O_2$ and HF was used. In order to investigate the effect of electrochemical etching on the etching depth and reflectance characteristics, the sample was immersed in the aqueous etching solution for 1 min with and without applied cathodic voltages of -1 V and -2 V. As a result, the solar weighted reflectance, i.e., the averaged reflectance with considering solar spectrum (air mass 1.5), could be efficiently reduced for the electrochemically etched Si by applying the cathodic voltage of -2 V, which is expected to be useful for Si solar cell applications.
Keywords
Au nanoparticle catalysts; Electrochemical etching; Texturing; Si solar cells; Antireflective property;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Smigaj, B. Gralak, R. Pierre, and G. Tayeb, Opt. Lett. 34, 3532 (2009).   DOI   ScienceOn
2 E. B. Grann, M. G. Moharam, and D. A. Pommet, J. Opt. Soc. Am. A 12, 333 (1995).   DOI   ScienceOn
3 H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, Prog. Photovolt. Res. Appl. 15, 415 (2007).   DOI   ScienceOn
4 Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, Small 6, 984 (2010).   DOI   ScienceOn
5 D. Qi, N. Lu, H. Xu, B. Yang, C. Huang, M. Xu, L. Gao, Z. Wang, and L. Chi, Langmuir 25, 7769 (2009).   DOI   ScienceOn
6 T. Oh, J. Korean Vacuum Soc. 20, 189 (2011).   DOI
7 S. Yae, T. Kobayashi, T. Kawagishi, N. Fukumuro, and H. Matsuda, Sol. Energy 80, 701 (2006).   DOI   ScienceOn
8 S. Yae, Y. Kawamoto, H. Tanaka, N. Fukumuro, and H. Matsuda, Electrochem. Comm. 5, 632 (2003).   DOI   ScienceOn
9 Z. Huang, N. Geyer, P. Werner, J. de Boor, and U. Gösele, Adv. Mater. 23, 285 (2011).   DOI   ScienceOn
10 H. S. Jang, H. J. Choi, B. Y. Oh, and J. H. Kim, Electrochem. Solid-State Lett. 14, D5 (2011).   DOI
11 Y. H. Ko and J. S. Yu, Phys. Status Solidi A 208, 2778 (2011).   DOI   ScienceOn
12 N. Megouda, T. Hadjersi, G. Piret, R. Boukherroub, and O. Elkechai, Appl. Surf. Sci. 255, 6210 (2009).   DOI   ScienceOn
13 M. L. Zhang, K. Q. Peng, X. Fan, J. S. Jie, R. Q. Zhang, S. T. Lee, and N. B. Wong, J. Phys. Chem. C 112, 4444 (2008).   DOI
14 J. Kim, J. Korean Phys. Soc. 50, 1168 (2007).   DOI   ScienceOn
15 M. J. Huang, C. R. Yang, Y. C. Chiou, and R. T. Lee, Sol. Energy Mater. Sol. Cells 92, 1352 (2008).   DOI   ScienceOn
16 R. Dewan, M. Marinkovic, R. Noriega, S. Phadke, A. Salleo, and D. Knipp, Opt. Express 17, 23058 (2009).   DOI
17 M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, and E. F. Schubert, Opt. Express 16, 5290 (2008).   DOI
18 T. J. Gim, B. J. Lee, and P. K. Shin, J. Korean Vacuum Soc. 19, 341 (2010).   DOI