• Title/Summary/Keyword: Solar radiation rate

Search Result 202, Processing Time 0.025 seconds

Measurement of Mass Flow of Water in the Stem of Musk Melon by Sap Flow Gauge (열목지 경유센서에 의한 멜론 경유양의 측정)

  • 강곡명;양원모
    • Journal of Bio-Environment Control
    • /
    • v.7 no.3
    • /
    • pp.268-274
    • /
    • 1998
  • The mass flow of water in the stem of melon measured by Sap Flow Gauge was compared with the actual flow calculated by the difference between supply and drainage nutrient water to investigate the possibility and accuracy of estimation of melon's transpiration in rockwool culture. The Sap Flow Gauge which was made with copper-constantan theromocouple and nichrome fiber by our research team, was attached to the 3rd node of melon. The outdoor temperature, room temperature, solar radiation and relative humidity were continually measured. The amount of supply and drainage nutrient water were simultaneously measured for calculation of practical consumption of nutrient water to compare with mass flow of sap. The measuring errors of Sap Flow Gauge were 0.3 to 31.8%, which were small at solar radiation of 20MJ.m$^{2}$.d$^{-1}$ . The mass flow of water was lower for the measured value by Sap Flow Gauge than the actual value at higher solar intensity, however it was higher at lower solar intensity The variation of error rate of each Sap Flow Gauge was 0.1 to 13.0%. The measuring error with Sap Flow Gauge was negatively related with solar intensity and temperature. Therefore, to measure more exactly the mass flow of sap for estimation of melon's transpiration, the compensation factor must be calculated.

  • PDF

Daily Variation of Heat Budget Balance in the Gangjeong-Goryung Reservoir for Summertime - Concerning around the Rate of Heat Storage - (낙동강 강정고령보의 여름철 열수지 일변화 - 열 저장량 변동을 중심으로 -)

  • Kim, Seong-Rak;Cho, Chang-Bum;Kim, Hae-Dong
    • Journal of Environmental Science International
    • /
    • v.24 no.6
    • /
    • pp.721-729
    • /
    • 2015
  • Surface heat balance of the Gangjeong-Goryung Reservoir is analyzed for 12-17 August 2013. Each flux elements at the water surface is derived from the special field observations with application of an aerodynamical bulk method for the turbulent heat fluxes and empirical formulae for the radiation heat fluxes. The rate of heat storage in the reservoir is estimated by using estimated by surface heating rate and the vertical water temperature data. The flux divergence of heat transport is estimated as a residual. The features of the surface heat balance are almost decided by the latent heat flux and the solar radiation flux. On average for 12-17 August 2014 in the Gangjeong- Goryung Reservoir, if one defines the insolation at the water surface as 100 %, 94 % is absorbed in the reservoir; thereafter the reservoir loses about 30~50% by sensible heat, latent heat and net long-wave radiation. The residue of 50~80 % raises the water temperature in the reservoir or transported away by the river flow during the daytime.

A development of solar hot water system for anchovy proceeding (멸치가공을 위한 태양열 온수기 개발)

  • Kong, T.W.;Ji, M.K.;Lee, Y.H.;Chung, H.S.;Jeong, H.M.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.671-676
    • /
    • 2001
  • This study are development results of solar hot water system for anchovy proceeding. The heat amounts of boiling vessel are calculated 292.66W at forward and backward direction, and surface direction are calculated 373.14W. The polyenoic rate of anchovy are measured lower as high temperature, but monoenoic and polyacid are higher. Then the others. The maximum radiation of anchovy fishing grounds are shown $350kcal/m^2h$ at pm. 13:00, Chungdo in CHINA. Distributions of Velocity and temperature in boiling vessel are calculation. Solar collector and boiling vessel for anchovy proceeding ship are developed to automatic control system.

  • PDF

A Study on Energy Distributions Produced by Dish Solar Concentrating System (접시형 태양열 집광 시스템의 에너지 분포 특성에 관한 연구)

  • 현성택;강용혁;천원기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.11
    • /
    • pp.907-913
    • /
    • 2002
  • An experimental study on energy density distributions produced by dish solar concentrating system was performed to optimally design and rightly position a cavity receiver. This deemed also very useful to find and correct various errors associated with a concentrator. It is observed that the actual focal length is 2.17 m with a maximum energy density of 1.89 MW/$m^2$. By evaluating the position of flux centroid, it was found that there are errors within 2 cm from the target center. As a result of the percent power within radius, approximately 90% of the incident radiation is intercepted by about 0.06 m radius. The area concentration ratio normalized to 800 W/$m^2$ insolation and 90% mirror reflectivity was 347 suns. The total integrated power of 2467 W was measured under focal flux distributions, which corresponds to the intercept rate of 85.8%.

Characteristics on Variation of Temperature and Ozone Concentration during the Partial Solar Eclipse Event of 22 July 2009 at Busan (2009년 7월 22일 부분일식 발생 시 부산지역 기온과 오존농도의 변화 특성)

  • Jeon, Byung-Il;Oh, In-Bo
    • Journal of Environmental Science International
    • /
    • v.20 no.8
    • /
    • pp.1049-1059
    • /
    • 2011
  • This paper examines the effects of the partial solar eclipse of 22 July 2009 across the Korean peninsular on surface temperature and ozone concentrations in over the Busan metropolitan region (BMR). The observed data in the BMR demonstrated that the solar eclipse phenomenon clearly affects the surface ozone concentration as well as the air temperature. The decrease in temperature ranging from 1.2 to $5.4^{\circ}C$ was observed at 11 meteorological sites during the eclipse as a consequence of the solar radiation decrease. A large temperature drop exceeding $4^{\circ}C$ was observed at most area (8 sites) of the BMR. Significant ozone drop (18~29 ppb) was also observed during the eclipse mainly due to the decreased efficiency of the photochemical ozone formation. The ozone concentration started to decrease at approximately 1 to 2 hours after the event and reached its minimum value for a half hour to 2 hours after maximum eclipse. The rate of ozone fall ranged between 0.18 and 0.49 ppb/min. The comparison between ozone measurements and the expected values derived from the fitted curve analysis showed that the maximum drop in ozone concentrations occurred at noon or 1 PM and was pronounced at industrial areas.

Performance Enhancement of Solar Thermal Storage Tank with Heat Exchange Coils (Part 2 : Simulation) (열교환코일 내장형 태양열 축열조의 성능향상 (제2보 시뮬레이션))

  • Kim, Jong-Hyun;Li, LongJie;Lee, Uk-Jae;Hong, Hiki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.9
    • /
    • pp.361-366
    • /
    • 2016
  • As an alternative of well-mixed storage tank with lower coil only, we have proposed a tank with lower and upper coils and verified a superior thermal stratification in a tank, which results in increased collector efficiency and solar fraction. But the phenomenon of temperature reversal was often experimentally observed in the tank, so a revised control was successfully applied which is to heat only lower coil using three way valve if temperature reversal occurs and to operate the collector with low flow rate when the condition of solar radiation is not good. In the present study, using TRNSYS we compared the existing lower heating and the proposed lower and upper heating with a control preventing temperature reversal. The results showed that the proposed method has an increase of collector efficiency by 5.1% and solar fraction by 3.2%.

Response Surface Approach to Design Optimization of Regenerator Using Hot Air Heated by Solar Collector (태양열 온풍 이용을 위한 재생기의 설계 최적화 모델에 관한 연구)

  • Woo, Jong-Soo;Choi, Kwang-Hwan;Yoon, Jeong-In
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.3
    • /
    • pp.7-14
    • /
    • 2003
  • Absorption potential of desiccant solution significantly decreases after absorbing moisture from humid air, and a regeneration process requires a great amount of energy to recover absorption potential of desiccant solution. In an effort to develop an energy efficient regenerator, this study examines a regeneration process using hot air heated by solar radiation to recover absorption potential by evaporating moisture in liquid desiccant. More specifically, this study is aimed at finding the optimum operating condition of the regenerator by utilizing a well-established statistical tool, so-called response surface methodology(RSM), which may provide a functional relationship between independent and dependent variables. It is demonstrated that an optimization model to find the optimum operating condition can be obtained using the functional relationship between regeneration rate and affecting factors which is approximated on the basis experimental results.

Effect of Greenhouse Cooling Method on the Growth and Yield of the Tomato cv. Momotaro in Warm Season (고온기 유리온실의 냉방방법이 토마토 생육 및 수량에 미치는 영향)

  • 이재한;박동금;권준국;엄영철;최영하
    • Journal of Bio-Environment Control
    • /
    • v.9 no.1
    • /
    • pp.60-64
    • /
    • 2000
  • This study was conducted to investigate effects of cooling methods on the growth and yield of tomato cv. momotaro in the glasshouse for four years from 1996 to 1999. Cooling methods were fan, fan and fogging, fan and shading(temp. control), fan and shading(radiation control), fan and shading (temp. control) with fogging. Fan, Fogging and Shading(temp. control) were operated automatically when air temperature was over 3$0^{\circ}C$. Amount of fogging was 500m1/min/100m$^2$and Droplets in a fog were 50 microns or smaller. Shading(radiation control) was operated automatically when solar radiation was over 500W/m$^2$. The growth and yield were the least in fan and shading(temp. control) method due to lack of light Intensity. Fogging method must be reconsidered for expensive equipment and maintenance expenses. As the matter stands, It is suggested to be the most considerable cooling method to increase ventilation rate with fan or use fan and shading(radiation control).

  • PDF

Design and Performance Analysis of Conical Solar Concentrator

  • Na, Mun Soo;Hwang, Joon Yeal;Hwang, Seong Geun;Lee, Joo Hee;Lee, Gwi Hyun
    • Journal of Biosystems Engineering
    • /
    • v.43 no.1
    • /
    • pp.21-29
    • /
    • 2018
  • Purpose: The objective of this study is to evaluate the performance of the conical solar concentrator (CSC) system, whose design is focused on increasing its collecting efficiency by determining the optimal conical angle through a theoretical study. Methods: The design and thermal performance analysis of a solar concentrator system based on a $45^{\circ}$ conical concentrator were conducted utilizing different mass flow rates. For an accurate comparison of these flow rates, three equivalent systems were tested under the same operating conditions, such as the incident direct solar radiation, and ambient and inlet temperatures. In order to minimize heat loss, the optimal double tube absorber length was selected by considering the law of reflection. A series of experiments utilizing water as operating fluid and two-axis solar tracking systems were performed under a clear or cloudless sky. Results: The analysis results of the CSC system according to varying mass flow rates showed that the collecting efficiency tended to increase as the flow rate increased. However, the collecting efficiency decreased as the flow rate increased beyond the optimal value. In order to optimize the collecting efficiency, the conical angle, which is a design factor of CSC, was selected to be $45^{\circ}$ because its use theoretically yielded a low heat loss. The collecting efficiency was observed to be lowest at 0.03 kg/s and highest at 0.06 kg/s. All efficiencies were reduced over time because of variations in ambient and inlet temperatures throughout the day. The maximum efficiency calculated at an optimum flow rate of 0.06 kg/s was 85%, which is higher than those of the other flow rates. Conclusions: It was reasonable to set the conical angle and mass flow rate to achieve the maximum CSC system efficiency in this study at $45^{\circ}$ and 0.06 kg/s, respectively.

CRE ECPERIMENT OF KITSAT-1 (우리별 1호에서의 SPACE RADIATION 환경 조사)

  • 신영훈;민경욱;최영완;김성헌
    • Journal of Astronomy and Space Sciences
    • /
    • v.11 no.1
    • /
    • pp.131-145
    • /
    • 1994
  • The Cosmic Ray Experiment (CRE) is one of the modules flown on board the KITSAT-1 satellite and consistes of two sub-systems: the Total Dose Experiment (TDE) and the Cosmic Particl Experiment(CPE). The purpose of CRE is to characterize the space radiation environment as encountered by an Earth-orbiting spacecraft. KITSAT-1 orbit is dominated by the inner Van Allen radiation belt. This region has a large population of high energy protons which contributes significantly to both long-term and transient radiation effects. The data shows that the inner Van Allen radiation belt is very stable and the solar activity influences the CPE, TDE data and SEU(Single Event Upset) rates. The result also shows that much larger high energy particle flux is recorded than the predictions of the CREME code.

  • PDF