• 제목/요약/키워드: Solar panels

검색결과 202건 처리시간 0.025초

그래핀 기반 투명전극 : 현황과 전망 (Graphene based Transparent Conductive Film : Status and Perspective)

  • 이승기;안종현
    • 한국세라믹학회지
    • /
    • 제50권5호
    • /
    • pp.309-318
    • /
    • 2013
  • Graphene has attracted considerable attention since its first production from graphite in 2004, due to its outstanding physical and chemical properties. The development of production methodsfor large scale, high quality graphene films is an essentialstep toward realizing graphene applications such as transparent, conductive film. Chemical deposition methods, using metal catalystsand gaseous carbon sources, have been extensively developed for large area synthesis. In this paper, wereview recent progress ingraphene production, and survey the role of graphene electrodes in various electronic devices such as touch panels, solar cells, solid statelighting and microelectronic devices.

Reference Point Projection Method for Improved Dynamics of Solar Array Hardware Emulation

  • Wellawatta, Thusitha;Choi, Sung-Jin
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2018년도 전력전자학술대회
    • /
    • pp.126-128
    • /
    • 2018
  • Solar array simulator (SAS) is a special DC power supply that regulates the output voltage or current to emulate characteristics of photovoltaic (PV) panels. Especially, the control of SAS is a challenging task due to the nonlinearity in the output curve, which is dependent on irradiance as well as temperature and is determined by panel materials. Conventionally, both current-mode control and voltage-mode control should be alternated by partitioning the operating curve into multiple sections, which is not only for the measurement noise problem with the feedback sensing but also for the control stability issue near the maximum power point. However, the occurrence of transition among different controllers may deteriorate the overall performance. To eliminate the mode transitions, a novel single controller scheme has been introduced in this paper, where the reference operating projection technique enables simple, smooth and numerically stable control. Theoretical consideration on the loop stability issue is discussed and the performance is verified experimentally for the emulation of a PV panel data in view of stability and response speed.

  • PDF

노약자의 안전을 위한 스마트 시스템 구현 - 에너지 하베스트를 중심으로 - (Implementing the Smart System for the Safety of the Elderly and the Weak - Focus on Energy Harvest -)

  • 고주영;김현기
    • 한국멀티미디어학회논문지
    • /
    • 제23권12호
    • /
    • pp.1507-1518
    • /
    • 2020
  • Recently, as the proportion of the elderly population in Korea has increased rapidly, it has entered an aging society. As the scope of social activities of the elderly increases, the risk of safety accidents is also increasing. The traffic accident rate of elderly pedestrians is higher than ordinary people. Although various smart devices for the elderly are researched and developed, electronic components are often used. Electronic devices may not be able to be used if charging is not regularly. In this paper, a smart hat, a smart system for the elderly and the weak, was implemented using solar panels. The system uses solar energy to provide reliable use of smart devices. It is believed to be helpful not only for the elderly but also for the weak people by easy to wear the hat.

Performance of a Static Concentrator Photovoltaic Based on 4× Compound Parabolic Concentrator for Electric Vehicle Applications

  • Hoang Vu;Tran Quoc Tien;Nguyen Van Nhat;Ngoc Hai Vu;Seoyong Shin
    • Current Optics and Photonics
    • /
    • 제8권4호
    • /
    • pp.375-381
    • /
    • 2024
  • In this report, we present the design, fabrication, and experiment of a static solar system for electric vehicle (EV) applications. The static concentration component is composed of compound parabolic concentrators (CPCs) couplings with multi-junction solar cells, where a flat silicon panel is added to the bottom of the CPV structure to maximize power generation. This design allows the system to collect both direct sunlight and diffused sunlight. The CPCs were fabricated with acrylic with a geometric concentration ratio of 4×. We built a prototype with a (3 × 3) cell array of CPCs with a thickness of 25 mm, which is as thin as conventional flat photovoltaic panels, and performed an outdoor experiment that showed that after six hours of operation, the system had an acceptance angle of approximately 43° and an average daily efficiency of 22.85%.

CONCEPTUAL STRUCTURAL DESIGN AND COMPARATIVE POWER SYSTEM ANALYSIS OF OZONE DYNAMICS INVESTIGATION NANO-SATELLITE (ODIN)

  • Park, Nuri;Hwang, Euidong;Kim, Yeonju;Park, Yeongju;Kang, Deokhun;Kim, Jonghoon;Hong, Ik-seon;Jo, Gyeongbok;Song, Hosub;Min, Kyoung Wook;Yi, Yu
    • 천문학회지
    • /
    • 제54권1호
    • /
    • pp.9-16
    • /
    • 2021
  • The Ozone Dynamics Investigation Nano-Satellite (ODIN) is a CubeSat design proposed by Chungnam National University as contribution to the CubeSat Competition 2019 sponsored by the Korean Aerospace Research Institute (KARI). The main objectives of ODIN are (1) to observe the polar ozone column density (latitude range of 60° to 80° in both hemispheres) and (2) to investigate the chemical dynamics between stratospheric ozone and ozone depleting substances (ODSs) through spectroscopy of the terrestrial atmosphere. For the operation of ODIN, a highly efficient power system designed for the specific orbit is required. We present the conceptual structural design of ODIN and an analysis of power generation in a sun synchronous orbit (SSO) using two different configurations of 3U solar panels (a deployed model and a non-deployed model). The deployed solar panel model generates 189.7 W through one day which consists of 14 orbit cycles, while the non-deployed solar panel model generates 152.6 W. Both models generate enough power for ODIN and the calculation suggests that the deployed solar panel model can generate slightly more power than the non-deployed solar panel model in a single orbit cycle. We eventually selected the non-deployed solar panel model for our design because of its robustness against vibration during the launch sequence and the capability of stable power generation through a whole day cycle.

Dynamics Modeling and Simulation of Korean Communication, Ocean, and Meteorology Satellite

  • No, Tae-Soo;Lee, Sang-Uk;Kim, Sung-Ju
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제8권2호
    • /
    • pp.89-97
    • /
    • 2007
  • COMS(Communication, Oceanography, and Meteorology Satellite) is the first Korean multi-purpose satellite which is planned to be deployed at the altitude of geosynchronous orbit above the Korean peninsular. Noting that COMS is composed of the main BUS structure, two deployable solar panels, one yoke, five reactions wheels, COMS is treated as a collection of 9 bodies and its nonlinear equations of motion are obtained using the multi-body dynamics approach. Also, a computer program is developed to analyze the COMS motion during the various mission phase. Quite often, the equations of motion have to be derived repeatedly to reflect the fact that the spacecraft dynamics change as its configuration, and therefore its degree of freedom varies. However, the equations of motion and simulation software presented in this paper are general enough to represent the COMS dynamics of various configurations with a minimum change in input files. There is no need to derive the equations of motion repeatedly. To show the capability of the simulation program, the spacecraft motion during the solar array partial and full deployment has been simulated and the results are summarized in this paper.

태양광 발전시스템의 컨버터 고장에 따른 보상운전기법 (Fault tolerant control scheme for a converter in a photovoltaic system)

  • 박태식;허용호;이광운;문채주;곽노홍
    • 한국태양에너지학회 논문집
    • /
    • 제36권4호
    • /
    • pp.31-40
    • /
    • 2016
  • The demands for photovoltaic systems on a large scale have grown dramatically and require new technologies to get the high efficiency and reliable operations of power conversion systems. These needs can be realized by the cost-effective and high performance digital revolutions and faster semiconductor switching devices. However, the new power systems have been more sophisticated and their reliability becomes critical issues. In this paper, a new fault-tolerance power conversion scheme for the photovoltaic systems is proposed. The proposed fault-tolerant scheme is able to supply energy from solar panels to loads intermittently in spite of a front boost converter open failure, and its voltage and current controllers are designed to improve the transient performance by using an average model design scheme. The proposed approach is verified both by simulations. The results will enable more timely and wide usage of alternative/renewable energy systems resulting in increased energy security.

독립형 태양광 발전을 이용한 효율적인 하이브리드 LED 가로등 조명관리 시스템 설계 (An Efficient Hybrid LED Street Lighting Management System Design using Standalone Solar Photovoltaic)

  • 홍성일;인치호
    • 제어로봇시스템학회논문지
    • /
    • 제20권9호
    • /
    • pp.984-993
    • /
    • 2014
  • In this paper, we propose a design for an efficient hybrid LED street lighting management system using standalone solar photovoltaic. The proposed efficient hybrid LED street lighting management system was composed of hybrid power conditioning system, gateways, LED street lights and a monitoring server. The hybrid power conditioning system was designed to charge produced power by solar photovoltaic panels in day time, and supply power to the LED street lights in night time. If there is insufficient power, the system was designed to operate using firm power, because the system utilizes photovoltaic power. A system control algorithm allied to the lighting management system, and experimented by being configured to the functions that are able to perform real-time monitoring and remote control through the lighting management system even when absent. In the result of the efficiency analysis of the hybrid lighting management system proposed in this paper, we were able to increase the energy efficiency compared to existing lighting control systems by reducing power consumption and electricity costs.

A Study on SSDP protocol based IoT / IoL Device Discovery Algorithm for Energy Harvesting Interworking Smart Home

  • Lee, Jonghyeok;Han, Jungdo;Cha, Jaesang
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제10권2호
    • /
    • pp.7-12
    • /
    • 2018
  • The spread of IoT (Internet of Things) technology that connects objects based on wired / wireless networks is accelerating, and IoT-based smart home technology that constitutes a super connected network connecting sensors and home appliances existing inside and outside the home is getting popular. In addition, demand for alternative energy technologies such as photovoltaic power generation is rapidly increasing due to rapid increase of consumption of energy resources. Recently, small solar power systems for general households as well as large solar power systems for installation in large buildings are being introduced, but they are effectively implemented due to limitations of small solar panels and lack of power management technology. In this paper, we have studied smart home structure and IoT / IoL device discovery algorithm for energy harvesting system based on photovoltaic power generation, It is possible to construct an efficient smart home system for device control.

Implementation of a Switched PV Technique for Rooftop 2 kW Solar PV to Enhance Power during Unavoidable Partial Shading Conditions

  • Kumar, B. Praveen;Winston, D. Prince;Christabel, S. Cynthia;Venkatanarayanan, S.
    • Journal of Power Electronics
    • /
    • 제17권6호
    • /
    • pp.1600-1610
    • /
    • 2017
  • We propose maximum power extraction from a rooftop solar photovoltaic (PV) array during partial shading conditions. Partial shading is unavoidable during power extraction from rooftop PV systems due to nearby tall buildings (construction of additional floors) and trees (growth of trees). Many reconfiguration techniques can be used to extract maximum power in partial shading conditions, but in several cases, the real maximum power output is not achieved. In this study, a new switched PV technique is proposed to enhance the power output. The proposed technique is simple to use and more cost effective than other reconfiguration techniques. Therefore, it is suitable for rooftop applications. The power output of the proposed technique is compared with that of existing techniques with similar shading patterns. Eight panels with ratings of 250 watts (2 kW) each are used for testing. MATLAB simulation and hardware verification are done for the proposed and existing techniques. The proposed technique is implemented on a $4{\times}2$ PV array, although it can be extended to a number of arrays.