Browse > Article
http://dx.doi.org/10.4191/kcers.2013.50.5.309

Graphene based Transparent Conductive Film : Status and Perspective  

Lee, Seoung-Ki (School of Advanced Materials Science and Engineering, Sungkyunkwan University)
Ahn, Jong-Hyun (School of Electrical and Electronic Engineering, Yonsei University)
Publication Information
Abstract
Graphene has attracted considerable attention since its first production from graphite in 2004, due to its outstanding physical and chemical properties. The development of production methodsfor large scale, high quality graphene films is an essentialstep toward realizing graphene applications such as transparent, conductive film. Chemical deposition methods, using metal catalystsand gaseous carbon sources, have been extensively developed for large area synthesis. In this paper, wereview recent progress ingraphene production, and survey the role of graphene electrodes in various electronic devices such as touch panels, solar cells, solid statelighting and microelectronic devices.
Keywords
Graphene; Chemical vapor deposition; Transparent conductive film; Touch panel; Solar cell;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T.-H. Han, Y. Lee, M.-R. Choi, S.-H. Woo, S.-H. Bae, B. H. Hong, J.-H. Ahn, and T.-W. Lee, "Extremely Efficient Flexible Organic Light-emitting Diodes with Modified Graphene Anode," Nature Photon., 6, 105-10 (2012).   DOI   ScienceOn
2 S.-K. Lee, B. J. Kim, H. Jang, S. C. Yoon, C. Lee, B. H. Hong, J. A. Rogers, J. H. Ch, and J.-H. Ahn, "Stretchable Graphene Transistors with Printed Dielectrics and Gate Electrodes," Nano Lett., 11, 4642-46 (2011).   DOI   ScienceOn
3 S.-K. Lee, H. Y. Jang, S. Jang, E. Choi, B. H. Hong, J. Lee, S. Park, and J.-H. Ahn, "All Graphene-based Thin Film Transistors on Flexible Plastic Substrates," Nano Lett., 12, 3472-76 (2012).   DOI   ScienceOn
4 J. E. Lee, B. K. Sharma, S.-K. Lee, H. Jeon, B. H. Hong, H.-J. Lee, and J.-H. Ahn, "Thermal Stability of Metal Ohmic Contact Tin Indium-gallium-zinc-oxide Transistors Using Graphene Barrier Layer," Appl. Phys. Lett., 102, 113112 (2013).   DOI   ScienceOn
5 H. Tian, Y. Yang, D. Xie, T.-L. Ren, Y. Shu, C.-J. Zhou, H. Sun, X. Liu, and C.-H. Zhang, "A Novel Flexible Capacitive Touch Pad Based on Graphene Oxide Film," Nanoscale, 5, 890-94 (2013).   DOI   ScienceOn
6 X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, "Graphene-On-Silicon Schottky Junction Solar Cells," Adv. Mater., 22, 2743-48 (2010).   DOI   ScienceOn
7 X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton, and A. F. Hebard, "High Eciency Graphene Solar Cells by Chemical Doping," Nano Lett., 12, 2745-50 (2012).   DOI   ScienceOn
8 L. G. D. Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. Zhou, "Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics," ACS Nano, 4, 2865-73 (2010).   DOI   ScienceOn
9 H. Park, J. A Rowehl, K. K. Kim, V. Bulovicand, and J. Kong, "Doped Graphene Electrodes for Organic Solar Cells," Nanotechnol., 21, 505204 (2010).   DOI   ScienceOn
10 M. Vosgueritchian, D. J. Lipomi, and Z. Bao, "Highly Conductive and Transparent PEDOT:PSS Films with a Fluorosurfactant for Stretchable and Flexible Transparent Electrodes," Adv. Funct. Mater., 22, 421-28 (2012).   DOI   ScienceOn
11 K. Chung, C.-H. Lee, and G.-C. Yi, "Transferable GaN Layers Grown on ZnO-Coated Graphene Layers for Optoelectronic Devices," Science, 330, 655-57 (2010).   DOI   ScienceOn
12 Y. Wang, S. W. Tong, X. F. Xu, B. Ozyilmaz, and K. P. Loh, "Interface Engineering of Layer-by-Layer Stacked Graphene Anodes for High-Performance Organic Solar Cells," Adv. Mater., 23, 1514-18 (2011).   DOI   ScienceOn
13 K. S. Lee, Y. Lee, J. Y. Lee, J.-H. Ahn, and J. H. Park, "Flexible and Platinum-Free Dye-Sensitized Solar Cells with Conducting Polymer-Coated Graphene Counter Electrodes," Chem. Sus. Chem., 5, 379-82 (2012).   DOI
14 G. Jo, M. Choe, C.-Y. Cho, J. H. Kim, W. Park, S. Lee, W.-K. Hong, T.-W. Kim, S.-J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, "Large-scale Patterned Multi-layer Graphene Films as Transparent Conducting Electrodes for GaN Light-emitting Diodes," Nanotechnol., 21, 175201 (2010).   DOI   ScienceOn
15 T. Kobayashi, M. Bando, N. Kimura, K. Shimizu, K. Kadono, N. Umezu, K. Miyahara, S. Hayazaki, S. Nagai, Y. Mizuguchi, Y. Murakami, and D. Hobara, "Production of a 100-m-long High-quality Graphene Transparent Conductive Film by Roll-to-roll Chemical Vapor Deposition and Transfer Process," Appl. Phys. Lett., 102, 023112 (2013).   DOI   ScienceOn
16 K. K. Kim, A. Reina, Y. Shi, H. Park, L.-J. Li, Y. H. Lee, and J. Kong, "Enhancing the Conductivity of Transparent Graphene Films via Doping," Nanotechnol., 21, 285205 (2010).   DOI   ScienceOn
17 B. Lee, Y. Chen, F. Duerr, D. Mastrogiovanni, E. Garfunkel, E. Y. Andrei, and V. Podzorov, "Modification of Electronic Properties of Graphene with Self-Assembled Mono layers," Nano Lett., 10, 242732 (2010).
18 C.-L. Hsu, C.-T. Lin, J.-H. Huang, C.-W. Chu, K.-H. Wei, and L.-J. Li, "Layer-by-Layer Graphene/TCNQ Stacked Films as Conducting Anodes for Organic Solar Cells," ACS Nano, 6, 503139 (2012).
19 P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. J. Iang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, "Graphene-Based Liquid Crystal Device," Nano Lett., 8, 170408 (2008).
20 J. O. Hwang, J. S. Park, D. S. Choi, J. Y. Kim, S. H. Lee, K. E. Lee, Y.-H. Kim, M. H. Song, S. Yoo, and S. O. Kim, "Workfunction Tunable, N-Doped Reduced Graphene Transparent Electrodes for High-Performance Polymer Light-Emitting Diodes," ACS Nano, 6, 15967 (2011).
21 S. Tongay, K. Berke, M. Lemaitre, Z. Nasrollahi, D. B. Tanner, A. F. Hebard, and B. R. Appleton, "Stable Hole Doping of Graphene for Low Electrical Resistance and High Optical Transparency," Nanotechnol., 22, 425701 (2011).   DOI   ScienceOn
22 X. Hong, J. Hoffman, A. Posadas, K. Zou, C. H. Ahn, and J. Zhu, "Unusual Resistance Hysteresis in n-layer Graphene Field Effect Transistors Fabricated on Ferroelectric Pb($Zr_{0.2}Ti_{0.8})O_3$," Appl. Phys. Lett., 97, 033114 (2010).   DOI   ScienceOn
23 G.-X. Ni, Y. Zheng, S. Bae, C. Y. Tan, O. Kahya, J. Wu, B. H. Hong, K. Yao, and B. Ozyilmaz, "Graphene Ferroelectric Hybrid Structure for Flexible Transparent Electrodes," ACS Nano, 6, 393542 (2012).
24 K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Rohrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, "Towards Wafer-size Graphene Layers by Atmospheric Pressure Graphitization of Silicon Carbide," Nature Mater., 8, 203-07 (2009).   DOI   ScienceOn
25 G. Eda, G. Fanchini, and M. Chhowalla, "Large-Area Ultrathin Films of Reduced Graphene Oxide as a Transparent and Flexible Electronic Material," Nature Nanotech., 3, 270-74 (2008).   DOI   ScienceOn
26 K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, "Largescale Pattern Growth of Graphene Films for Stretchable Transparent electrodes," Nature, 457, 706-10 (2009).   DOI   ScienceOn
27 S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, "Roll-to-roll Production of 30-inch Graphene Films for Transparent Electrodes," Nature Nanotechnol., 5, 574-78 (2010).   DOI
28 Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S.-S. Pei, "Graphene Segregated on Ni Surfaces and Transferred to Insulators," Appl. Phys. Lett., 93, 113103 (2008).   DOI   ScienceOn
29 J.-U. Park, S. Nam, M.-S. Lee, and C. M. Lieber, "Synthesis of Monolithic Graphene-graphite Integrated Electronics," Nature Mater., 11, 120-25 (2012).
30 L. Gao,W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L.-P. Ma, Z. Zhang, Q. Fu, L.-M. Peng, X. Bao, and H.-M. Cheng, "Repeated Growth and Bubbling Transfer of Graphene with Millimetre-size Single-crystal Grains Using Platinum," Nature Commun., 3, 699 (2012).   DOI   ScienceOn
31 Y.-J. Kim, S. J. Kim, M. H. Jung, K. Y. Choi, S. Bae, S.-K. Lee, Y. Lee, D. Shin, B. Lee, H. Shin, M. Choi, K. Park, J.-H. Ahn, and B. H. Hong, "Low Temperature Growth and Direct Transfer of Graphene Graphitic Carbon Films on Flexible Plastic Substrates," Nanotechnol., 23, 344016 (2012).   DOI   ScienceOn
32 G. D. Yuan, W. J. Zhang, Y. Yang, Y. B. Tang, Y. Q. Li, J. X. Wang, X. M. Meng, Z. B. He, C. M. L. Wu, I. Bello, C. S. Lee, and S.T. Lee, "Graphene Sheets via Microwave Chemical Vapor Deposition," Chem. Phys. Lett., 467, 361-64 (2009).   DOI   ScienceOn
33 T. Kuila, S. Bose, P. Khanra, A. K. Mishra, N. H. Kim, and J. H. Lee, "Recent Advances in Graphene-based Biosensors," Biosens. Bioelectron., 26, 4637-48 (2011).   DOI   ScienceOn
34 C. Lee, X. Wei, J. W. Kysar, and J. Hone, "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene," Science, 321, 385-88 (2008).   DOI   ScienceOn
35 R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, "Fine Structure Constant Defines Visual Transparency of Graphene," Science, 320, 1308 (2008).   DOI   ScienceOn
36 H. Yang, J. Heo, S. Park, H. J. Song, D. H. Seo, K. Byun, P. Kim, I. Yoo, H. Chung, and K. Kim "Graphene Barristor, a Triode Device with a Gate-Controlled Schottky Barrier," Science, 336, 1140-43 (2012).   DOI   ScienceOn
37 B. H. Lee, S. H. Park, H. Back, and K. Lee, "Novel Film-Casting Method for High-Performance Flexible Polymer Electrodes," Adv. Funct. Mater., 21, 487-93 (2011).   DOI   ScienceOn
38 X. Y. Zeng, Q.-K. Zhang, R.-M. Yu, and C.-Z. Lu, "A New Transparent Conductor: Silver Nanowire Film Buried at the Surface of a Transparent Polymer," Adv. Mater., 22, 4484-88 (2010).   DOI   ScienceOn
39 Y. Zhu, Z. Sun, Z. Yan, Z. Jin, and J. M. Tour, "Recent Rational Design of Hybrid Graphene Films for High-Performance Transparent Electrodes," ACS Nano, 5, 6472-79 (2011).   DOI   ScienceOn
40 Y.-M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu, A. Grill, and Ph. Avouris, "100-GHz Transistors from Wafer-Scale Epitaxial Graphene," Science, 327, 662 (2010).   DOI   ScienceOn
41 I. Meric, M. Y. Han, A. F. Young, B. O. Zyilmaz, P. Kim, and K. L. Shepard, "Current saturation in Zero-bandgap, Top-gated Graphene Field-effect Transistors," Nature Nanotech., 3, 654-59 (2008).   DOI   ScienceOn
42 X. Wang, L. Zhi, and K.S. Mullen, "Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells," Nano Lett., 8, 323-27 (2008).   DOI   ScienceOn
43 R. Prasher, "Graphene Spreads the Heat," Science, 328, 185-86 (2010).   DOI   ScienceOn
44 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films," Science, 306, 666-69 (2004).   DOI   ScienceOn
45 A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, "Superior Thermal Conductivity of Single-Layer Graphene," Nano Lett., 8, 902-07 (2008).   DOI   ScienceOn
46 D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, "Control of Graphene's Properties by Reversible Hydrogenation : Evidence for Graphene," Science, 323, 610-13 (2009).   DOI   ScienceOn
47 J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, and B. H. Weiller, "Practical Chemical Sensors from Chemically Derived Graphene," ACS Nano, 3, 301-06 (2009).   DOI   ScienceOn