• Title/Summary/Keyword: Solar light

Search Result 1,244, Processing Time 0.027 seconds

A BAFFLE DESIGN FOR AN AIRGLOW PHOTOMETER ON BOARD THE KOREA SOUNDING ROCKET-III

  • LEE YOUNG SUN;KIM YONG HA;YI YU;KIM JHOON
    • Journal of The Korean Astronomical Society
    • /
    • v.33 no.3
    • /
    • pp.165-172
    • /
    • 2000
  • A baffle system for an airglow photometer, which will be on board the Korea Sounding Rocket-III(KSR-III), has been designed to suppress strong solar scattered lights from the atmosphere below the earth limb. Basic principles for designing a baffle system, such as determination of baffle dimensions, arrangement of vanes inside a baffle tube, and coating of surfaces, have been reviewed from the literature. By considering the constraints of the payload size of the KSR-III and the incident angle of solar light scattered from the earth limb, we first determined dimensions of a two-stage baffle tube for the airglow photometer. We then calculated positions and heights of vanes to prohibit diffusely reflected lights inside the baffle tube from entering into the photometer. In order to evaluate performance of the designed baffle system, we have developed a ray tracing program using a Monte Carlo method. The program computed attenuation factors of the baffle system on the order of $10^{-6}$ for angles larger than $10^{\circ}$, which satisfies the requirements of the KSR-III airglow experiment. We have also measured the attenuation factors for an engineering model of the baffle system with a simple collimating beam apparatus, and confirmed the attenuation factors up to about $10^{-4}$. Limitation of the apparatus does not allow to make more accurate measurements of the attenuation factors.

  • PDF

2017 Total Solar Eclipse Expedition of KASI

  • Bong, Su-Chan;Choi, Seonghwan;Kim, Jihun;Park, Jongyeob;Jang, Bi-Ho;Park, Young-Deuk;Cho, Kyung-Suk;Cho, Kyuhyoun;Chae, Jongchul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.67.2-67.2
    • /
    • 2017
  • Korea Astronomy and Space Science Institute (KASI) plans to develop a coronagraph to measure the coronal electron density, temperature, and speed using four different filters around 400 nm, where strong Fraunhofer lines from the photosphere are scattered by coronal electrons. During the total solar eclipse occurring on August 21 across USA, KASI will organize an expedition team to demonstrate the coronagraph measurement scheme and the instrumental technology. The observation site is in Jackson Hole, Wyoming, USA. We plan to build two coronagraphs without occulter to improve signal to noise ratio. In addition, images of white light corona, wide field background, and all sky are planned to be taken with DSLR cameras. We will present the preliminary results of the expedition.

  • PDF

A Study on Efficient Management of Solar Powered LED Street Lamp Using Weather forecast (기상예보를 이용한 태양광 LED 가로등의 효율적 운용에 관한 연구)

  • Pyo, Se-Young;Kwon, Oh-Seok;Kim, Kee-Hwan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.129-135
    • /
    • 2015
  • This study, in the operation of street lamp, suggests appropriate algorithm to extend the number of days of street lamp operation as much as possible if the number of sunless days continues and experimentally determines the value of Weather Factor necessary for this algorithm. This is conducted by reducing electricity consumption and securing battery remains through the use of standby power mode, in which maximum amount of light is maintained if there is a pedestrian, and constant brightness is maintained without utilizing maximum electric power if no pedestrians exist, with the application of WFactor value created by the algorithm considering weather forecast and amount of sunlight.

Velocity and Pressure Measurement of Channel Cavity Flow by PTV (PTV에 의한 채널캐비티 유동의 속도 및 압력계측)

  • Cho, D.H.;Kim, J.G.;Lee, Y.H.
    • Solar Energy
    • /
    • v.17 no.3
    • /
    • pp.59-66
    • /
    • 1997
  • The present study adopted the PTV method for the velocity acquisition. The system consists of an image grabber built-in a personal computer and a laser-based sheet light projector and particle identification softwares. Velocity vectors are obtained, by PTV and they are used as velocity components for Poisson equation for pressure. Related boundary conditions and no-slip condition at solid wall and the linear velocity extrapolation on the upper side of cavity are well examined for the present study. For calculation of pressure, resolution of grid is basically $40{\times}40$ and 2-dimensional uniform mesh using MAC staggered grid is adopted. The result of experiment reveal that, newly suggested measuring method is capable of estimating pressure and velocity distribution of flow field reasonably.

  • PDF

PIV Measurement of Airflow in a Vertical Channel With Square Heat Source (정방형 발열체를 갖는 수직채널 내부의 공기유동 관한 PIV계측)

  • Bae, S.T.;Kim, D.K.;Kim, S.P.;Cho, D.H.;Lee, Y.H.
    • Solar Energy
    • /
    • v.17 no.3
    • /
    • pp.35-41
    • /
    • 1997
  • An experimental study was carried out in a vertical channel with square heat source by visualization equipment with laser apparatus. The image processing system consists of one commercial image board slit into a personal computer and 2-dimensional sheet light by Argon-Ion Laser with cylindrical lens and flow picture recording system. Instant simultaneous velocity vectors at whole field were measured by 2-D PIV system which adopted two-frame grey-level cross correlation algorithm. Heat source was uniform heat flux(5W). The obtained results show various flow patterns such as the kinetic energy distribution and the turbulent kinetic energy distribution.

  • PDF

A Study on Energy Savings Analysis by Controling LED Lighting according to the Change of the Amount of Daylight (주광량의 변화에 따른 LED조명 제어를 통한 에너지 절감량 분석에 관한 연구)

  • Ham, Won-Tae;Chae, Soo-Yong;Han, Soo-Bin;Kim, Heung-Geun;Jung, Hak-Guen
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.522-528
    • /
    • 2012
  • Currently, the energy consumption of electric lighting in an office building is accounted for more than 30% of the total energy consumption. In order to reduce the energy consumed by the indoor lighting, the daylight as a natural energy resource can play an important role in energy savings. The daylight can have positive impacts on improvement of work efficiency and productivity, and also make people feel more psychologically stable. Moreover, by using the daylight, we can definitely reduce the energy consumption in office buildings. Thus, the purpose of this study is to determine the LED dimming ratio depending on the ratio by calculating the amount of artificial illumination required according to the change of daylight by using the light simulation software that can quantify and visualize the performance of daylight. As a result, the energy savings could be obtained up to 30%.

  • PDF

Consideration of a Circumsolar Dust Ring in Resonant Lock with the Venus

  • Jeong, Jin-Hoon;Ishiguro, Masateru
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.54-54
    • /
    • 2010
  • Interplanetary space is filled with dust particles originating mainly from comets and asteroids. Such interplanetary dust particles lose their angular momentum by olar radiation pressure, causing the dust grains to slowly spiral inward Poynting-Robertson effect). As dust particles move into the Sun under the influence of Poynting-Robertson drag force, they may encounter regions of resonance just outside planetary orbits, and be trapped by their gravities, forming the density enhancements in the dust cloud (circumsolar resonance ring). The circumsolar resonance ring near the Earth orbit was detected in the zodiacal cloud through observations of infrared space telescopes. So far, there is no observational evidence other than Earth because of the detection difficulty from Earth bounded orbit. A Venus Climate Orbiter, AKATSUKI, will provide a unique opportunity to study the Venusian resonance ring. It equips a near-infrared camera for the observations of the zodiacal light during the cruising phase. Here we consider whether Venus gravity produces the circumsolar resonance ring around the orbit. We thus perform the dynamical simulation of micron-sized dust particles released outside the Earth orbit. We consider solar radiation pressure, solar gravity, and planetary perturbations. It is found that about 40 % of the dust particles passing through the Venus orbit are trapped by the gravity. Based on the simulation, we estimate the brightness of the Venusian resonance ring from AKATSUKI's locations.

  • PDF

Characteristics of Erythemal Ultraviolet Irradiance operating at Korea Meteorological Administration (기상청에서 운용 중인 지역별 지표 홍반자외선(EUV-B) 복사의 특성)

  • Hong Gi-Man;Choi Byoung-Cheol
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.2
    • /
    • pp.223-233
    • /
    • 2006
  • We analyzed the monthly and seasonal mean of the daily Erythemal Ultraviolet-B (EUV-B, $280{\sim}320nm$) irradiance operating in Pohang, Anmyeon, Gosan, Mokpo and Kangnung with UV-Biometer (Solar Light Co., Model No. 501) at clear-sky noon during the period from 1999 to 2004. Also, we investigated the seasonal and regional characteristics for the UV index over the Korean Peninsula. The daily maximum occurred near solar southing time and the highest monthly accumulated EUV-B irradiance appeared in July and August at each regional observatory. The monthly mean value of the clear-sky EUV-B irradiance in Pohang, Anmyeon, Gosan, Mokpo and Kangnung showed 196.6, 161.8, 221.9, $171.5mWm^{-2}\;and\;179.7mWm^{-2}$ near noon in July respectively. The annual mean value of the daily accumulated EUV-B irradiance in Pohang, Anmyeon, Gosan, Mokpo and Kangnung were 1.8, 2.1, 2.2, $1.8kJm^{-2}\;and\;1.5kJm^{-2}$ respectively. The UV Index (UVI) showed above UVI 7(High) more than 90 days during one year over the Korean Peninsula.

Work Function Modification of Indium Tin Oxide Thin Films Sputtered on Silicon Substrate

  • Oh, Gyujin;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.351.2-351.2
    • /
    • 2014
  • Indium tin oxide (ITO) has a lot of variations of its properties because it is basically in an amorphous state. Therefore, the differences in composition ratio of ITO can result in alteration of electrical properties. Normally, ITO is considered as transparent conductive oxide (TCO), possessing excellent properties for the optical and electrical devices. Quantitatively, TCO has transparency over 80 percent within the range of 380nm to 780nm, which is visible light although its specific resistance is less than $10-3{\Omega}/cm$. Thus, the solar cell is the best example for which ITO has perfectly matching profile. In addition, when ITO is used as transparent conductive electrode, this material essentially has to have a proper work function with contact materials. For instance, heterojunction with intrinsic thin layer (HIT) solar cell could have both front ITO and backside ITO. Because each side of ITO films has different type of contact materials, p-type amorphous silicon and n-type amorphous silicon, work function of ITO has to be modified to transport carrier with low built-in potential and Schottky barrier, and approximately requires variation from 3 eV to 5 eV. In this study, we examine the change of work function for different sputtering conditions using ultraviolet photoelectron spectroscopy (UPS). Structure of ITO films was investigated by spectroscopic ellipsometry (SE) and scanning electron microscopy (SEM). Optical transmittance of the films was evaluated by using an ultraviolet-visible (UV-Vis) spectrophotometer

  • PDF

The fabrication of textured ZnO:Al films using HCI wet chemical etching (후 식각법을 이용한 Textured ZnO:Al 투명전도막 제조)

  • Yoo, Jin-Su;Lee, Jeong-Chul;Kang, Ki-Hwan;Kim, Seok-Ki;Yoon, Kyung-Hoon;Song, Jin-Soo;Park, I-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1482-1484
    • /
    • 2002
  • Transparent conductive oxides (TCO) are necessary as front electrode for most thin film solar cell. In our paper, transparent conducting aluminum-doped Zinc oxide films (ZnO:Al) were prepared by rf magnetron sputtering on glass (Corning 1737) substrate as a variation of the deposition condition. After deposition, the smooth ZnO:Al films were etched in diluted HCI (0.5%) to examine the electrical and surface morphology properties as a variation of the time. The most important deposition condition of surface-textured ZnO films by chemical etching is the processing pressure and the substrate temperature. In low pressures (0.9mTorr) and high substrate temperatures $({\leq}300^{\circ}C)$, the surface morphology of films exhibits a more dense and compact film structure with effective light-trapping to apply the silicon thin film solar cells.

  • PDF