• Title/Summary/Keyword: Solar irradiance

Search Result 237, Processing Time 0.029 seconds

Mathematical and Simulation Models for the Orientation of the Terminal Cladodes of Platyopuntia (부채仙人掌類의 頂端葉牀莖의 方位에 관한 數學 및 數植模寫 Model)

  • Chang, Nam-Kee;Heui-Baik Kim
    • The Korean Journal of Ecology
    • /
    • v.7 no.4
    • /
    • pp.194-202
    • /
    • 1984
  • The mathematical and simulation models to estimate the monthly average daily solar irradiance onthe terminal cladodes of platyopuntia were established. An east-west facing cladode showed maximum irradiance from March to October, while south-north facing one did from November to February from themodel. The orientations and the tilt angles were practically measured on Hallim-eup, Cheju-do. They tended to face east-west, but the overall distribution was deviagted at about 10。 was owing to the southern east wind blowing strongly at that time. The most cladodes inclined to the north or the west rather than erected vertically to the ground. It is thought that the tilt angles were also affected by the southern east wind.

  • PDF

A Study on the Tracking Failure of MPPT Control in PV Generation System (태양광 발전시스템의 MPPT제어의 최대전력추종 실패에 관한 연구)

  • Kim, Bong-Tae;Lee, Jae-Deuk;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1290-1292
    • /
    • 2001
  • Photovoltaic(PV) power generation system has been extensively studied and watched with keen interest as a clean and renewable power source. On the other hand, because the output power of solar cell is not only unstable but uncontrollable, the maximum power point tracking(MPPT) control is still hot issue with the tracking failure left unsolved under the sudden fluctuation of irradiance. Hence, in this paper, we introduce the mechanism of the tracking failure under the fluctuation of irradiance, and show the simulation results using SPRW(simulation method for PV power generation system using real weather conditions).

  • PDF

Improved Modeling of I-V Characteristic Based on Artificial Neural Network in Photovoltaic Systems (태양광 시스템의 인공신경망 기반 I-V 특성 모델링 향상)

  • Park, Jiwon;Lee, Jonghwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.135-139
    • /
    • 2022
  • The current-voltage modeling plays an important role in characterizing photovoltaic systems. A solar cell has a nonlinear characteristic with various parameters influenced by the external environments such as the irradiance and the temperature. In order to accurately predict current-voltage characteristics at low irradiance, the artificial neural networks are applied to effectively quantify nonlinear behaviors. In this paper, a multi-layer perceptron scheme that can make accurate predictions is employed to learn complex formulas for large amounts of continuous data. The simulated results of artificial neural networks model show the accuracy improvement by using MATLAB/Simulink.

Evaluation of long-term performance for single-stage desalination system with solar energy (태양에너지 해수담수화 실증시스템 장기 운전 열성능)

  • Kwak, Hee-Youl;Yoon, Eung-Sang;Joo, Moon-Chang;Joo, Hong-Jin
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.172-177
    • /
    • 2008
  • This study was carry out evaluation of long-term performance for the decentralized desalination system with the solar thermal system and the photovoltaic power system. First operating demonstration system was set up in Cheju in 2006. These system comprises the desalination unit with designed daily fresh water capacity of $2m^3$ and is supplied by a $120m^2$ evacuated tubular solar collector, a $6m^3$ heat storage tank, and a 5kW photovoltaic power generation supply the electricity for hydraulic pumps to move the working fluids. In a clear day more than 400W/$m^2$, the daily fresh water showed to produce more than about 500liter, and from January, 2007 to October, 2008 for 2 years, solar irradiance daily averaged was measured 370W/$m^2$, the daily fresh water yield showed that can be produced about 330liter.

  • PDF

Attenuation of the Atmospheric Aerosol Transmissivity due to Air Pollution (대기오염에 의한 대기투과도 감쇠에 대한 연구)

  • Kim, Yoo-Keun;Lee, Hwa-Woon;Lee, Yong-Seob
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.11 no.E
    • /
    • pp.23-29
    • /
    • 1995
  • Relationship between atmospheric aerosol transmissivity and air pollution was analyzed using observed data in a large industrial city, Pusan, Korea. The atmospheric aerosol transmissivity predicted by method of present study in Pusan was assessed by the method of Yamamoto et al.(1968) in order to set up an empirical model to predict the transmissivity using the various meteorological parameters and air pollution. As a result, good correlation between these tow method re observed. Thus, it is possible to conclude that the parameterization of air pollution suggested by this study is another method to give reliable estimate of atmospheric aerosol transmissivity and direct solar irradiance in Pusan.

  • PDF

A Study on the Characteristics of Dye Sensitized Solar Cells with TiO2 Thickness and Sintering Temperature (TiO2 두께 및 소성온도에 따른 염료감응 태양전지 특성에 관한 연구)

  • Lee, Young-Min;Lee, Don-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1233-1238
    • /
    • 2014
  • In this thesis, it is investigated the characteristics of Dye Sensitized Solar Cell (DSSC) according to variation of $TiO_2$ thickness (6, 12, 18, and $24{\mu}m$) and three distinct $TiO_2$ sintering temperatures (350, 450 and $550^{\circ}C$) by XRD, SEM, I-V and UV-Vis spectrophotometer. According to sintering temperature, $TiO_2$ was transformed into the anatase structure at $350^{\circ}C$, rutile structure at $550^{\circ}C$ and further into the two structure at $450^{\circ}C$. With increasing thickness up to $18{\mu}m$ and sintering temperature up to $450^{\circ}C$, respectively, the irradiance rate increased in the range of 9~26 percent and 2.80~5.10 percent. Whereas a further increase to $24{\mu}m$ and $550^{\circ}C$, the irradiance rate decrease in the range of 4~11 percent and 30~47 percent. The conversion efficiency increased in the range of 2.80~5.01 and 3.03~5.01 with increasing thickness up to $18{\mu}m$ and sintering temperature up to $450^{\circ}C$. By contrast, increase to $24{\mu}m$ and $550^{\circ}C$, the conversion efficiency decreased in the range of 3.31~5.01 and 2.80~3.89, respectively. The DSSC that thickness of $TiO_2$ were $18{\mu}m$ and sintered at $450^{\circ}C$ exhibited the most excellent characteristics, in which open-circuit voltage, short-circuit current, Fill Factor and conversion efficiency are 0.69 V, $11.4mA/cm^2$, 0.64 and 5.01%, respectively.

Estimation of Optimal Angle for PV Panels Considering Building's Shadow in Daejeon (대전지역 건물음영을 고려한 PV 최적각도 산정)

  • Lee, Jung-Tae;Kim, Hyun-Goo;Kang, Yong-Heack;Yun, Chang-Yeol;Kim, Chang Ki;Kim, Jin-Young;Kim, Bo-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.3
    • /
    • pp.43-52
    • /
    • 2020
  • By blocking irradiance, shadows cast by high-rise buildings in urban areas can reduce the power generation efficiency of PV panels installed on low-rise buildings. As the conventionally installed PV panel is not suitable for the urban environment, which is unfavorable for power generating, a more radical solution is required. This study aims to help solve this problem by estimating the optimal PV panel angle. Using the proposed method, the optimal PV angle was calculated by considering shadows that could be cast by nearby buildings throughout the year, and the correlation between solar shading and elevation angle was discovered based on the calculated data.

Development of PV Power Prediction Algorithm using Adaptive Neuro-Fuzzy Model (적응적 뉴로-퍼지 모델을 이용한 태양광 발전량 예측 알고리즘 개발)

  • Lee, Dae-Jong;Lee, Jong-Pil;Lee, Chang-Sung;Lim, Jae-Yoon;Ji, Pyeong-Shik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.4
    • /
    • pp.246-250
    • /
    • 2015
  • Solar energy will be an increasingly important part of power generation because of its ubiquity abundance, and sustainability. To manage effectively solar energy to power system, it is essential part In this paper, we develop the PV power prediction algorithm using adaptive neuro-fuzzy model considering various input factors such as temperature, solar irradiance, sunshine hours, and cloudiness. To evaluate performance of the proposed model according to input factors, we performed various experiments by using real data.

Optimal Allocation of Distributed Solar Photovoltaic Generation in Electrical Distribution System under Uncertainties

  • Verma, Ashu;Tyagi, Arjun;Krishan, Ram
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1386-1396
    • /
    • 2017
  • In this paper, a new approach is proposed to select the optimal sitting and sizing of distributed solar photovoltaic generation (SPVG) in a radial electrical distribution systems (EDS) considering load/generation uncertainties. Here, distributed generations (DGs) allocation problem is modeled as optimization problem with network loss based objective function under various equality and inequality constrains in an uncertain environment. A boundary power flow is utilized to address the uncertainties in load/generation forecasts. This approach facilitates the consideration of random uncertainties in forecast having no statistical history. Uncertain solar irradiance is modeled by beta distribution function (BDF). The resulted optimization problem is solved by a new Dynamic Harmony Search Algorithm (DHSA). Dynamic band width (DBW) based DHSA is proposed to enhance the search space and dynamically adjust the exploitation near the optimal solution. Proposed approach is demonstrated for two standard IEEE radial distribution systems under different scenarios.

Study on I-V simulation for PV module with matlab (Matlab을 이용한 PV모듈의 I-V시뮬레이션 관한 연구)

  • Hong, Jong-Kyoung;Jung, Tae-Hee;Kang, Gi-Hwan;Ahn, Hyung-Keun;Han, Deuk-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.4
    • /
    • pp.1-6
    • /
    • 2009
  • This paper estimates numerically cells the electrical characteristics of the PV module with environmental changes such as shunt resistance, series resistance, temperature, irradiance. Series resistance $R_s$ including diode characteristic resistance $r_d$ is derived from the p-n junction diode model. I-V characteristics of this model with series resistance $R_s$ are simulated on Matlab. Finally, theoretical I-V characteristics are compared with those of solar simulator. Those results agreed well within the manufacturer's maximum error range 3%