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Abstract – In this paper, a new approach is proposed to select the optimal sitting and sizing of 
distributed solar photovoltaic generation (SPVG) in a radial electrical distribution systems (EDS) 
considering load/generation uncertainties. Here, distributed generations (DGs) allocation problem is 
modeled as optimization problem with network loss based objective function under various equality 
and inequality constrains in an uncertain environment. A boundary power flow is utilized to address 
the uncertainties in load/generation forecasts. This approach facilitates the consideration of random 
uncertainties in forecast having no statistical history. Uncertain solar irradiance is modeled by beta 
distribution function (BDF). The resulted optimization problem is solved by a new Dynamic Harmony 
Search Algorithm (DHSA). Dynamic band width (DBW) based DHSA is proposed to enhance the 
search space and dynamically adjust the exploitation near the optimal solution. Proposed approach is 
demonstrated for two standard IEEE radial distribution systems under different scenarios. 
 
Keywords: Electrical distribution systems, Dynamic harmony search algorithm, Renewable distributed 
generation, Boundary power loss 

 
 
 

1. Introduction 
 
The ever-increasing demand of electric power, exhaust-

tions of conventional power resources, environmental 
problems and limitation on transmission network have 
created increased interest in development of distributed 
generation (DG) technology. DGs are the small power 
generation units directly placed in electrical distribution 
level networks. Optimal selection of size and sitting of 
DGs can reduce the transmission power losses, on peak 
operating costs, and improve the voltage profile and 
reliability of the distribution system [1]. Now a days, 
solar and wind based DGs are frequently used in radial 
distribution networks. 

In the literature, studies of allocation of DGs are carried 
out to achieve the different objectives. Kayal and Chanda 
[2] presented an approach for optimally allocating the solar 
and wind based DGs in the EDS in order to minimize the 
energy loss, and, to improve the security and voltage 
profile of the system. An optimization method is employed 
in [3] for allocation of DGs to achieve the aim of 
minimization of active power loss and improve the voltage 
profile of the system. In some of the literature, optimal 
allocation of DG is studied in order to minimize the grid 
dependency; to maximize the profit with constraint of 
voltage limit, line loading capability, power quality and 
system security [4-6]. In [5], Shaaban et.al. have proposed 

a method to allocate renewable DGs in order to maximize 
the worth of local distribution utility and customers 
connected to EDS. Keane and O'Malley [6] optimize the 
size and locations of DGs using constrained linear 
programming with objective of maximization of DG 
generation in the distribution system. 

There are number of analytical and meta-heuristic 
methods used in the research literature. In [7-8], analytical 
methods are used to solve the problem of optimal sitting 
and sizing of DGs. A current injection based expression 
is used by Acharya et.al. [7], to allocate the DGs in 
distribution network with objective of minimization of 
power losses. Whereas in [8-9] power based expression 
have been used in the analytical approach for DG 
allocation. In order to find the optimal location and size 
of DGs in EDS, power loss and voltage profile based 
multi-objective function is solved using improved harmony 
search algorithm (IHSA) [10]. Hybrid meta-heuristic 
approaches like genetic based tabu search algorithm [11] 
and a combination of genetic algorithm and particle swam 
optimization (PSO) [12] are employed to identify the 
optimal locations and capacities of DGs. El-Zonkoly [13] 
have proposed a multi objective index based technique to 
find the size and sitting of multiple DGs in an EDS. PSO 
algorithm is used to solve the problem in order to reduce 
the power loss and MVA flows, improve the voltage profile 
and loadability of the system. Optimal DG allocation 
problem have been solved by oppositional teaching 
learning based optimization (QTLBO) approach in [14]. 
It was achieved by using opposition-based learning (OBL) 
and quasi OBL concepts along with teaching learning 
based optimization (TLBO) in order to speed up the 
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convergence. In [15], multi objective problem of DG 
planning in power distribution network is solved using 
single objective function (OF). Probabilistic load flow 
based GA is used to solve the OF under uncertainties of load 
growth, DG power generation etc. System uncertainties 
associated with time varying loads are considered using 
probabilistic model in planning of a distribution system 
[16]. In this planning, optimal allocation of DGs are 
evaluated by TRIBE PSO and ordinal optimization. These 
approaches are based on the statistical data. A fuzzy based 
model has been developed in [17] to allocate the DG in 
radial power distribution system under uncertainties. GA is 
used to solve the power loss based OF. 

From the literature review it is observed that efficient 
selection of DGs capacity/size and location in the network 
is very essential and depends on various operating and 
system parameters. Many of the methods discussed in 
literature have successfully been applied to evaluate the 
size and sitting of DGs in order to achieve the optimized 
performance of distribution systems. But, most of the 
studies are done using crisp data for load/generation 
forecast. However, uncertainties exist in power systems 
and must be addressed in any analysis or optimization. 
These uncertainties are even more important in planning 
studies, as we are dependent on future forecast. Some 
attempts are available to handle these uncertainties in a 
probabilistic way. This needs the historical data to be 
available. The accounts for random uncertainties remain a 
challenge. It is very difficult to predict an accurate load 
and DG generation in EDS planning. Moreover it is 
comparatively easy to give the range of load/generation 
values [18]. Hence, a boundary power flow based approach 
is utilized in this paper for determining the size and 
location of DGs while considering the uncertainties in 
load/generation forecasts. These boundary values of load/ 
generation have been successfully used in the analysis of 
different power system problems like boundary power flow 
(BPF) [19], transmission network expansion planning [20] 
etc. In this paper, BPF based approach is proposed to solve 
the problem of DG allocation in EDS. A solar photovoltaic-
based DG is assumed for the placement in this analysis. 
The uncertainties in load as well as solar photovoltaic 
generation are considered. Solar photovoltaic output is 
modeled through probabilistic distribution. 

Many meta-heuristic approaches have been applied for 
optimal DG placement and sizing in literature. These 
techniques sometimes suffer from slow convergence and 
local optimality. In this paper, harmony search algorithm 
(HSA) is used with modification in bandwidth. HSA was 
first developed by Greem et al. [21] and is based on 
improvisation process of musicians to find a melody music. 
HSA is modified with dynamic bandwidth (DBW) to 
enhance the search space and self-adjust the DBW near the 
convergence level [22]. The rest of the paper is organized 
as follows. 

Probabilistic distributed SPVG model is discussed in 

section 2. Problem formulation is presented in section 3. 
Detailed explanation of dynamic HSA based DG allocation 
strategies can be found in section 4. Section 5 consists of 
description of tests systems and renewable resources. 
Simulation results and discussions are given in section 6. 
Conclusions of the work are portrayed in section 7. 

 
 

2. Probabilistic distributed SPVG model 
 
SPVG power generation is highly influenced by random 

phenomenon of solar irradiance and ambient temperature. 
Solar irradiance and ambient temperature are intermittent 
in nature and depends on meteorological and geographical 
conditions. Hence, detailed analysis of DG power 
generations at installed location is very important at the 
planning stage for effective and uninterrupted utilization of 
DGs. Stochastic characteristics of solar irradiance can be 
represented by beta probability distribution function 
(BPDF) [23]. Over a selected period of time ‘h’, beta 
distribution of irradiance (kW/m2) is given as 
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Where, beta function is expressed by Г(•) and fb(s) is 

the beta distribution function (BDF) of the random variable 
‘s’. ‘s’ is the solar irradiance in kW/m2. α and β are the 
parameter of BDF. Values of these parameters depends on 
the mean (ν) and slandered deviation (σ) of ‘s’. 

Main factors influencing the output power of the SPVG 
are irradiance, ambient temperature of the site and 
parameters of solar panels. Maximum power generated by 
SPVG can be calculated at specified irradiance ‘s’ as 

 
 ( )SPVG h hPG s N FF V I= × × ×  (4) 

 
Where, N is the number of modules used in PV array. Vh 

and Ih are output voltage and output current respectively. 
They are functions of module temperature. FF is the fill 
factor of the module. For a specific time segment ‘h’ these 
parameters are evaluated by following relations- 
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Table 1. Parameters of a PV Module [23] 

Parameters Values 
TA 30.76 0C 

NOT 43 0C 
IMPP 7.76 A 
VMPP 28.36 V 
ISC 8.38A 
VOC 36.96 V 
Ki 0.00545 A/0C 
Kv 0.1278 V/0C 

 

 
Fig. 1. Expected PV output at 12:00-13:00 hours in a day 

of summer season 
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VOC and ISC are the open circuit voltage in volts and short 

circuit current in amperes. Voltage and current at maximum 
power points (MPP) are denoted by VMPP and IMPP 
respectively. TCh, TA and NOT are the cell, ambient and 
nominal operating temperature in 0C, respectively. Whereas, 
Kv and Ki are the voltage and current temperature 
constants. From above modeling of SPVG, it can be 
observed that if a module parameters and operating 
parameters are known or evaluated, then the power output 
of SPVG can be calculated using Eq. 4. An example is 
given to understand the evaluation of SPVG power. A 
parameter of a solar photovoltaic (PV) module is given in 
Fig 1. Let the values of mean and standard deviation of 
solar irradiance at a specified time interval 12:00-13:00 
hour of a day in summer season is 0.663 kW/m2 and 
0.162 kW/m2, respectively. The expected value of output 
powers of module are depicted in Fig. 1. Total power of the 
module in given interval is obtained by integrating the area 
covered in the Fig. 1. It is found that expected output 
power during 12:00-13:00 hour is 97.179 W.  

 
 

3. Problem Formulation 
 
Generally in the power distribution system planning, size 

and location of distributed generation (DG) is determined 
using deterministic data of load and generation. In most 

of the planning models peak load demand and maximum 
capacity of the DGs at different nodes are considered. 
However, DG generation and load data are the forecasted 
data. Therefore, these data are very uncertain and 
intermittent in nature because of load variability, climatic 
and geographical conditions. Power system operation 
depends on the load and generation scenarios. It is very 
difficult to obtain the exact value of load/generation 
specification for the planning and analysis. However, it is 
easy to specify the load/generation data in reasonable 
range instead of exact one. In this work, specified range of 
uncertainties in loads and DG generations are considered 
for allocation of DGs in the power distribution system. A 
boundary value approach is employed to handle these non-
statistical uncertainties, effectively.  

 
3.1 Objective function 

 
Objective of DGs allocation planning is to find the 

appropriate location and size of the DGs to be integrated, 
so that the total active power loss and grid power demand 
(Pgrid) during that planning horizon is optimum subject to 
the power system constraints. Output variables like voltage 
magnitude at each node, branch current and power flows 
are uncertain with uncertain input variables (Load demand 
and DG generation). Therefore, total system loss is also 
uncertain. For specified range of input data, range of 
output variable can be found with boundary power flow 
method. Hence, the range of total active power loss can 
be determined by boundary analysis approach for given 
range of input data. The objective of the planning is to 
find the optimal location and size of SPV based DGs in 
an uncertain environment. It can be formulated as an 
optimization problem with power loss based objective 
function represented as in Eq. (9) 

 

  LOSSMinimum F P=∑  (9) 
 
PLoss is calculated as summation of losses for three 

typical seasons, occurring periodically over a year. Out of 
the 12 months of a year, 3 months are considered as 
winter season, 6 months as summer season and 3 month as 
autumn season. In each season a typical day is considered 
and 24 hours load and SPVG data for that day is taken for 
calculation of total real power losses in the system as per 
Table 7 and 8.  

In order to find the total loss in presence of specified 
range of uncertainties, upper and lower boundary power 
flows are determined as in [19] and [20]. Similarly, 
boundary active power losses can be calculated using BPF. 
Therefore, average power loss in uncertain environment is 
given as  
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Where, _
upper

loss boundaryP  and _
lower

loss boundaryP  are upper and 
lower boundary value of output variable Ploss. 

 
3.2 Constraints 

 
The following constraints need to be satisfied, 

 Power flow constraints: Total power injected at a bus 
should be equal to difference of total generation (power 
supplied by utility and power generated by DGs) and 
demand (total load and losses) at that bus. 
 

 0SS DG load lossPG PG P P+ − − =∑ ∑  (11) 

 0SS load lossQG Q Q− − =∑  (12) 
 
PGss and QGss are active and reactive power supplied 
by utility substation. Ploss and Qloss are the active and 
reactive power loss. Pload and Qload are the active and 
reactive power demand. PGDG is the power generated by 
DGs. 

 Bus voltage constraint: The voltage at each bus should 
be within permissible limit. 

 
   i min i i maxV V V< <  (13) 

 
Vi min and Vi max are the minimum and maximum voltage 
magnitude limits on ith bus respectively. Whereas, Vi 
stands for actual voltage at ith bus. 

 DG penetration Constraint: The power generated by 
each DG should be less than or equal to maximum DG 
capacity. 

 
    DG i DG max iP P≤  (14) 
 % penetrations of DG ( ) ΩDG totalP ≤  (15) 

 
Where,  
 

 Ω 100
DG

load

PG

P
= ×∑
∑

 (16) 

 
Constraint (14) represents the max capacity of DG 
that can be installed at ith node. Net grid power demand 
in distribution system is reduced and voltage profiles 
of the buses are improved with penetrations of DGs 
(renewable DGs, SPVDGs). The effect of high 
penetration is accounted by an index (Ω) given in Eq. 
(15, 16).  
 
 

4. DG Allocation Strategy Using Dynamic 
Harmony Search (DHS) 

 
In this section, strategy to solve the DG allocation 

problem under uncertain environment is discussed. 

Proposed strategy is described in three subroutines: i) 
Boundary power flow with DGs to evaluate the power loss 
and bus voltages, ii) selection of harmony memory iii) 
DHS operators (Band width) to update the solution in 
different improvisations.  

 
4.1 Boundary power flow with DSPVG model 

 
In order to take care of uncertainties in load/generation 

specifications, boundary power BPF approach has been 
employed for power system operations and planning [20], 
[24]. BPF is carried out by taking a specified range of 
uncertainty in load demand and generation at each node. 
BPF process starts with deterministic power flow (DPF) 
solutions. Details of these two power flow approaches can 
be found in [18] and [19]. Characteristics of distributed 
solar power generations are highly influenced by weather 
conditions and geographical locations. Stochastic nature of 
DSPVG can be characterized by probability distribution 
function (PDF) over the specified time period. DSPVG 
model is discussed in previous sections. After placing the 
DSPVG at bus i, active power demand at node i can be 
modified as 

 
 DG base

Di Di DGiP P P= −  (17) 
 

DG
DiP  is the net demand at node i after placement of 

DSPVG  with size of DGiP  at the same node. base
DiP  is 

the base load connected at ith 
 node. 

The major steps to incorporate the stochastic model of 
DSPVG in BPF are given as follows: 

1. Read the data. 
2. Select the size and locations of DSPVGs and calculate 

the equivalent power demands  
3. Run the DPF with crisp data. Evaluate the Jacobian 

‘J’ and total power loss for the distribution system. 
4. Start the boundary power flow with DPF solutions. 
5. Evaluate the extreme value of active power loss  

Ploss max/min as 
 

  / 0 ( )m
loss max min loss sp calP P H Y Y= + −  (18) 

 
Where, H is the sensitivity vector with elements of Hj. 
Hj is the sensitivity of Ploss with change in load/ 
generation at jth bus. H can be calculated as  

 
H G K= ×  

 
      

,loss loss

at latest values of and V

P P
G

d dV θθ
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 (19) 

 
Here, K is the inverse of Jacobian evaluated at latest 
state variables (V, θ). 0

m
lossP  is the active power loss at 

mth
 iteration and Ycal is the function value evaluated 

at latest state variables. Ysp is the vector of input 
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variables and can be represented by an interval 
min max,sp spY Y⎡ ⎤

⎣ ⎦ . Selection of Ysp depends on the sign of 
associated Ploss sensitivity Hj and desired minimum or 
maximum value of Ploss. If Ploss min is desired, then 

 
min

sp j spY Y= if Hj is positive and Ysp j=
max

sp jY  if Hj is 
negative. Similarly, if maximum eigenvalue is 
interested, then max

 sp j sp jY Y= , if Hj is positive and 
 

min
sp j spY Y=  if Hj is negative. 

6.  Update the input specification with selected load/ 
generation, Ysp. 

7. Check for the convergence of BPF, if not go to step 4. 
8.  Save the extreme value (minimum or maximum) of 

Ploss.  
 
Note : Boundary value of Ploss cannot be obtained 

directly from boundary values of state variables θ and V. 
 

4.2 Selection of harmony memory 
 
Harmony search algorithm (HSA) is a recently developed 

and is popular meta-heuristic optimization algorithm. This 
algorithm is based on musician’s improvisation process 
to achieve a melody harmony. There are five algorithm 
parameters: Harmony memory size (HMS), Harmony 
memory considering rate (HMCR), pitch adjusting rate 
(PAR); number of improvisations (NI), or stopping 
criterion and the band width (BW). New harmony vector is 
generated after considering all vectors existing in current 
harmony memory (HM) which makes algorithm more 
flexible. Details of the algorithm and function of these 
parameters are given in [25]. In this paper, a harmony 
vector consisting of the solution candidates is represented 
by the information of total number, locations and size of 
the DGs. Harmony values of a harmony vector (HM’) can 
be given as 

 
 1 2[ . | loc locHM No of DGs DG DG=′ ……  
 1 2                ... | ]loc n size size size nDG DG DG DG…  (20) 

 
4.3 DHS with dynamic band width operator  

 
Various research and modifications in HSA have been 

carried out to enhance the performance of the algorithm. In 
[22] dynamic band width approach is proposed to improve 
the performance and time complexity of HSA. Ideology 
behind this concept is to use wider BW to make use of 
whole search space and dynamically adjust the BW 
towards the optimal solution. HSA integrated with this self-
adaptive nature is named as dynamic HSA (DHSA). In this 
approach, BW depends upon number of iterations (NI) 
required to solve the optimization problem. In order to 
have better understanding, a brief description of dynamic 
BW is presented here. 

The objective of dynamic BW (DBW) in HSA is to 
improve the exploration and exploitation characteristics 

of the algorithm. DBW depends on permissible limits of 
decision variables. It is a decreasing function of current 
iteration and total number of iterations specified for the 
problem. The selection of total number of iterations 
(termination condition) depends on the desired precision 
level of solution. In this improvisation methodology, 
iteration count is non-uniform throughout the simulation. 
Moderate number of iterations are required in starting 
whereas large number of iterations are desired near the 
point of convergence. This characteristics is similar to low 
pass filter and can be represented by an expression given in 
Eq. (21). 

 

 ( )
( )1

LBW i
i
Iter

κ

μ
=

+
 (21) 

 
Where, κ and μ are the constant parameters. These 

parameters can evaluated using specified limits of BW. 
According to Kalivarapu, et.al. [22], minimum value of 
BW (BWmin) should be very small. Effective value of 
maximum BW (BWmax) is generally assumed to be 10 % of 
the domain for a range of decision variables. ‘i’ and ‘Iter’ 
are the current iteration and total number of iterations. The 
exponent L∈ ℜ, must be greater than 1. κ is approximately 
equal to BWmax. Value of μ is evaluated with the empirical 
formula expressed in Eq. (22). 

 

(a) 

(b) 

Fig. 2. Values of DBW with respect to iterations (a) 
constant C1, (b) Constant C2 
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min

BW
C ln

C BW
μ

⎛ ⎞
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 (22) 

 
C1 & C2 are the constants and their numerical values are 

experimentally evaluated. Some experimental graphs for 
selection of C1 and C2 are given in Fig. 2. In order to 
achieve the continuous and effective decrement in BW 
with growing iterations, values of C1 and C2 are selected to 
be 50 and 100 respectively. 

Dynamic BW given in Eq. (21) is more effective for the 
problems having low decision variables (5 to 8 variables). 
For highly complex engineering optimization problems this 

algorithm is further modified to a discontinuous adaptive 
dynamic BW (DADBW) base HSA. DADBW is very 
effective for the optimization problems with large number 
of decision variables [25]. Expression for the DADBW is 
given as follow 

 

 ( ) ( )
( )

;
1 /

                              ;

L

min

BW i i pivot
BW i i Iter

BW i pivot

κ
μ

⎧ ⎫= <⎪ ⎪= +⎨ ⎬
⎪ ⎪≥⎩ ⎭

 (23) 

 
Pivot is an optimum iteration number (generally Iter/2) 

where discontinuity of DBW occurs. In this paper this 
value is selected to be 45% of the total number of iterations 
(Iter). Dynamic values of DBW against the iteration ‘i’ are 
depicted in Fig. 3. Flow chart for the simulation steps of 
DGs allocation using DHSA is presented in Fig. 4. 

 
 
5. Test Systems and Renewable Energy Sources 
 
Proposed approach is applied to two standard radial 

distribution systems: a) IEEE 10 bus system and b) IEEE 
33 bus system. Both the systems are portrayed in Fig. 5 and 
6, respectively. Test system data can be found in [26] and 
[15]. Total peak demand of first and second test system is 
13.6048 MVA and 4.0854 MVA respectively. In this study, 
maximum and minimum range of node voltage is set as 

 
Fig. 3. Variation of DBW with number of iterations 

corresponding to Eq. (23)  
 

 
Fig. 4. Flow chart of DHSA optimization algorithm for DG 

allocation 

Fig. 5. Schematic single line diagram of IEEE 10 bus radial 
distribution system 

 
Fig. 6. Schematic single line diagram of IEEE 33 bus radial 

distribution system 
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1.1 and 0.9 pu respectively. Maximum number of locations 
for distributed renewable energy sources (DRES) in 
IEEE 10 bus and 33 bus test systems are selected to be 3 
and 5 respectively. Distributed SPVG are selected as 
DRES. Three seasons, summer (March-August), autumn 
(September-November) and winter (December-February) 
of a complete year is chosen. Hourly load scenarios of all 
three season are given in Fig. 7. Hourly solar irradiance 
data for these seasons taken from [2] is given in appendix. 
Beta PDF are generated for each hour (for example Fig. 
1). Uncertainty range in load and SPVG output powers 
are assumed to be ±10% and ±5% of their specified/ 
forecasted values, respectively. These uncertainties are 
used for demonstration of results, however one can use 
this approach with different level of uncertainty for each 
load/generation for the planning of DGs in EDS, 
effectively. 

 
 

6. Simulation Results and Discussions 
 
In order to demonstrate the potential of proposed 

approach, computer simulations are performed in MATLAB 
environment. Deterministic power flow solutions are 
obtained with N-R load flow method. Uncertainties in 
load/generation are accounted by boundary power flow 
approach as explained in previous sections. Optimal 
locations and size of the solar photovoltaic based DGs are 
obtained by boundary value approach embedded DSHSA 
for the following three cases. 

 
I. 0% uncertainty in load/generation 
II. ±10 % uncertainty in load at each bus and 0% 

uncertainty in SPVG 
III. ±10 % uncertainty in load at each bus and ±5% 

uncertainty in each SPVG 
 
Case I is simply a case of normal DG placement 

problem without uncertainties. In these cases, base loads 
and rated/forecasted power of DGs in 12:00-13:00 hours of 
each season are used for the DG planning. Active power 
loss based objective function is solved by proposed DHSA. 
At the outset, algorithm parameters are selected after 

multiple trials. In this work, values of HMS, HMCR and 
NI are chosen to be 15, 0.95 and 1000, respectively, after 
complete parametric analysis. Range of PAR is evaluated 
as [0.02 0.99]. Minimum and maximum values of BW are 
selected as 0.5 and 0.001. Pivot value is calculated as 45 % 
of total iterations. However, in meta-heuristic optimization, 
no conclusion can be made with results of single run. Thus, 
more than 30 trials are carried out to evaluate the results. 
Optimal size and locations of DGs in 10 node network are 

 
Fig. 7. Loading scenario in different seasons 

Table 2. Optimal allocation of DGs in 10 bus system 

Case I Case II Case III 
DGs

Location Size 
(MW) Location Size  

(MW) Location Size 
(MW)

DG1 5 4.5797 6 3.6155 6 3.6109
DG2 8 3.0701 8 2.0706 8 2.3207
DG3 10 2.3191 10 2.2831 10 2.3669

 
Table 3. Comparison of solutions for various cases of 10-

bus system (for 12:00-13:00 hour, summer) 

Without SPVGs With SPVGs 
Network Parameters 

 Case I Case II Case III
Total peak Load (MW) 13.6048 13.6048 13.6048 13.6048

Power loss (kW) 981.2136 76.9090 89.6807 86.6892
Min. node Voltage  

(pu) 0.8374 0.9769 0.9761 0.9785 

Total DG Penetration
(MW) 0 9.9689 7.9693 8.2986 

% Penetration 0 73.27 58.57 60.99 

 

 
Fig. 8. Voltage profile of 10 bus radial distribution system

 
Fig. 9. Hourly active power loss in 10 bus system in 

different season without SPVGs 
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obtained with different cases and given in Table 2 and 3. 
Voltage profiles of the system are portrayed in Fig. 8. 
With these results, it can be found that the size of DGs 
and hence losses are changed with level of uncertainties. 
Also, in some cases optimal locations of DGs may vary 
from the locations obtained in analysis without uncertainties. 
Therefore, for appropriate selection of locations and size, 
uncertainties in data must be accounted. Hourly active 
power loss of 10 node distribution system without SPVGs 
is shown in Fig. 9. After determination of the optimal 
location and size of SPVGs, hourly power losses in 
different seasons are depicted in Fig. 10.  

To show the potential of the proposed dynamic search 
algorithm, the results have also been taken with normal 
improved harmony search algorithm (IHS) [27] for 33 bus 

system for Case I (Table 4). Table 4 shows that by the 
proposed method, more reduction in losses has achieved, 
with improvement in voltage profile as compared to 
normal IHS. Table 5 shows the optimal allocation of 
SPVGs in 33 node system by proposed method; for case I, 
II and III. The comparative analysis for all cases is given in 
the Table 6. SPVGs penetration is decreased with increase 
in uncertainty (case I to case III). Variations in size of 
SPVGs are also observed. Voltage profiles of the system 
with and without SPVGs at peak hours in summer season 
are depicted in Fig. 8. Impact of SPVGs integration on 
performance of radial EDS is studied with and without 
uncertainties for different season in Fig. 11 and 12. Hourly 
variations in network power loss are shown in Fig. 12. 

 
Fig. 10. Hourly active power loss in different season when 

SPVGs are optimally allocated in 10 bus system 
 

Table 4. Comparative results with various techniques for 
33 bus system 

 Without  
DG 

By 
IHS 

Proposed Method 
(Case I) 

Power Loss (kW) 202.6783 65.7991 65.6753 
Min. Voltage 0.9131 0.9713 0.9755 

Location 3 7 DG1 
Size (MW) 

- 
0.0810 0.9819 

Location 7 14 DG2  
Size (MW) 

- 
0.9030 0.6319 

Location 14 21 DG3  
Size (MW) 

- 
0.5840 0.2989 

Location 24 24 DG4 
Size (MW) 

- 
0.9620 1.0477 

Location 31 31 DG5 
Size (MW) 

- 
0.7050 0.7649 

 
Table 5. Optimal allocation of DGs in 33 bus system 

Case I Case II Case III 
DGs 

Location Size  
(MW) Location Size  

(MW) Location Size 
(MW)

DG1 7 0.9819 7 0.9912 7 0.9758
DG2 14 0.6319 14 0.6319 14 0.6281
DG3 21 0.2989 24 0.6034 21 0.2966
DG4 24 1.0477 25 0.4537 24 1.0407
DG5 31 0.7649 31 0.7653 31 0.7603

 
Fig. 11. Hourly active power loss in 33 bus system in 

different season without SPVGs 

 
Fig. 12. Hourly active power loss in different season when 

SPVGs are optimally allocated in 33 bus system 
 

Table 6. Comparison among the solutions in different cases 
of 33 bus system (for 12:00-13:00 hour, summer) 

With SPVG Network  
Parameters 

Without SPVGs 
(Base case) Case 1 Case II Case III

Total peak Load 
(MW) 4.0865 4.0865 4.0865 4.0865

Power loss (kW) 202.6783 65.6753 65.7075 65.5488
Minimum node 

voltage (pu) 0.9130 0.9755 0.9755 0.9752

Total DG  
penetration (MW) 0 3.7253 3.4456 3.7015

% Penetration 0 91.16 84.31 90.57 
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Results shows that the power flow pattern changes with the 
level of uncertainties; it leads to change in the system 
losses and finally optimal location of DGs. Therefore, 
consideration of uncertainties, which cannot be avoided in 
real power system operation is very important during the 
system planning. Voltage profile of the system is also 
improved with optimal integration of SPVGs. Impact of 
uncertainties on voltage profile of the system is shown in 
the Fig. 13. 

 
 

7. Conclusions 
 
In this paper, very simple and efficient strategy for 

DGs allocation planning under uncertainties of loads and 
DGs output powers is presented. First the boundary value 
approach is introduced to accommodate the load/generation 
uncertainties in the optimization problem. Then the 
boundary power losses are calculated to formulate the 
objective function. A new DWB based HSA is proposed 
to solve the objective function in order to obtain the 
optimal siting and sizing of SPVGs in distributed power 
system. BPDF is used to estimate the output power of 
SPVGs. The proposed methodology can handle the non-
statistical uncertainties associated with load/generation 
forecast, model and system parameters. Moreover, the 
system planner/designer is never sure about the crisp data. 
Hence, proposed methodology, allows a power system 
planner/designer to use range of data; rather than the crisp 
data. This method can be easily implemented for optimal 
allocation of renewable energy mixed DGs in a complex 
power distribution networks. 
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Appendix 
 

Table 7. Mean (φs) and standard deviation (σs) of solar 
irradiance (kW/m2) 

Summer Autumn Winter 
Hours

φs σs φs σs φs σs 
1 0 0 0 0 0 0 
2 0 0 0 0 0 0 
3 0 0 0 0 0 0 
4 0 0 0 0 0 0 
5 0 0 0 0 0 0 
6 0.07 0.021 0.07 0.029 0 0 
7 0.081 0.036 0.217 0.043 0.001 0.006 
8 0.237 0.056 0.398 0.08 0.067 0.042 
9 0.4 0.087 0.546 0.112 0.205 0.082 
10 0.523 0.127 0.644 0.133 0.337 0.12 
11 0.632 0.156 0.682 0.149 0.443 0.142 
12 0.663 0.162 0.664 0.145 0.516 0.161 
13 0.657 0.164 0.592 0.128 0.539 0.158 
14 0.612 0.147 0.473 0.099 0.479 0.151 
15 0.497 0.143 0.312 0.063 0.378 0.124 
16 0.349 0.116 0.14 0.03 0.241 0.085 
17 0.203 0.081 0.005 0.011 0.087 0.061 
18 0.068 0.063 0.002 0.008 0.002 0.008 
19 0.003 0.012 0 0 0 0 
20 0 0 0 0 0 0 
21 0 0 0 0 0 0 
22 0 0 0 0 0 0 
23 0 0 0 0 0 0 
24 0 0 0 0 0 0 

 
Table 8. Loading scenario in different seasons. 

Hours Winter Summer Autumn 
1 0.61 0.75 0.63 
2 0.59 0.73 0.59 
3 0.58 0.72 0.57 
4 0.58 0.72 0.57 
5 0.59 0.74 0.58 
6 0.66 0.80 0.62 
7 0.78 0.93 0.69 
8 0.85 1.00 0.78 
9 0.87 1.01 0.85 

10 0.88 1.01 0.90 
11 0.88 1.01 0.93 
12 0.87 1.00 0.95 
13 0.86 0.99 0.96 
14 0.86 0.98 0.97 
15 0.84 0.97 0.98 
16 0.84 0.98 0.98 
17 0.86 1.04 0.98 
18 0.90 1.11 0.96 
19 0.94 1.11 0.93 
20 0.93 1.08 0.93 
21 0.89 1.05 0.94 
22 0.83 0.99 0.89 
23 0.74 0.91 0.80 
24 0.67 0.83 0.71 

 
Fig. 13. Voltage profile of 33 bus radial distribution system 

for Case I, II and III 
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