• Title/Summary/Keyword: Solar hydrogen

Search Result 291, Processing Time 0.024 seconds

A study on Design and Efficient Management of 30kW BIPV System (건물통합형 30kW태양광발전시스템의 설계 및 효율적 운전관리에 관한 연구)

  • Park, Se-Joon;Lim, Jung-Yeol;Yoon, Seok-Am;Cha, In-Su
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.3
    • /
    • pp.15-20
    • /
    • 2008
  • Building-integrated photovoltaics(BIPV) are increasingly incorporated into new domestic and industrial buildings as a principal or ancillary source of electrical power, and are one of the fastest growing segments of the photovoltaic industry. This paper presents design, operational features analysis, and PCS(Power Conditioning System) of grid-connected 30kW BIPV set up on the library of Dongshin University. For a sustainable photovoltaics system in this area, the data of the BIPV system are collected and analyzed by monitoring system using LabView. PCS of the grid-connected BIPV system, also, is designed for optimal operation with characteristics suggested in this paper.

Characteristics of the Ionospheric Mid-Latitude Trough Measured by Topside Sounders in 1960-70s

  • Hong, Junseok;Kim, Yong Ha;Lee, Young-Sook
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.121-131
    • /
    • 2019
  • The ionospheric mid-latitude trough (IMT) is the electron density depletion phenomenon in the F region during nighttime. It has been suggested that the IMT is the result of complex plasma processes coupled to the magnetosphere. In order to statistically investigate the characteristics of the IMT, we analyze topside sounding data from Alouette and ISIS satellites in 1960s and 1970s. The IMT position is almost constant for seasons and solar activities whereas the IMT depth ratio and the IMT feature are stronger and clearer in the winter hemisphere under solar minimum condition. We also calculated transition heights at which the densities of oxygen ions and hydrogen/helium ions are equal. Transition heights are generally higher in daytime and lower in nighttime, but the opposite aspects are seen in the IMT region. Utilizing the Incoherent Scatter Radar (ISR) electron temperature measurements, we find that the electron temperature in the IMT region is enhanced at night during winter. The increase of electron temperature may cause fast transport of the ionospheric plasma to the magnetosphere via ambipolar diffusion, resulting in the IMT depletion. This mechanism of the IMT may work in addition to the simply prolonged recombination of ions proposed by the traditional stagnation model.

Comparative Study of Undoped and Nickel-Doped Molybdenum Oxide Photoanodes for PEC Water Splitting

  • Garcia-Garcia, Matias
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.377-389
    • /
    • 2022
  • The current global energy supply depends heavily on fossil fuels. This makes technology such as direct water splitting from harvesting solar energy in photoelectrochemical (PEC) systems potentially attractive due to its a promising route for environmentally benign hydrogen production. In this study, undoped and nickel-doped molybdenum oxide photoanodes (called photoanodes S1 and S2 respectively) were synthesized through electrodeposition by applying -1.377 V vs Ag/AgCl (3 M KCl) for 3 hours on an FTO-coated glass substrate immersed in molibdatecitrate aqueous solutions at pH 9. Scanning electron microscopy (SEM), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS) were used for microstructural and compositional characterizations of the photoanodes. In addition, the optical and photoelectrochemical characterizations of these photoanodes were performed by UV-Visible spectroscopy, and linear scanning voltammetry (LSV) respectively. The results showed that all the photoanodes produced exhibit conductivity and catalytic properties that make them attractive for water splitting application in a photoelectrochemical cell. In this context, the photoanode S2 exhibited better photocatalytic activity than the photoanode S1. In addition, photoanode S2 had the lowest optical band-gap energy value (2.58 eV), which would allow better utilization of the solar spectrum.

Effects of Internal Heat Exchanger on Performance of Organic Rankine Cycles (유기랭킨사이클의 성능에 미치는 내부열교환기의 영향)

  • Kim, Kyoung-Hoon;Jung, Yoong-Guan
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.3
    • /
    • pp.402-408
    • /
    • 2011
  • Organic Rankine cycles (ORC) can be used to produce power from heat at different temperature levels available as geothermal heat, as biogenic heat from biomass, as solar or as waste heat. In ORC working fluids with relatively low critical temperatures and pressures can be compressed directly to their supercritical pressures and heated before expansion so as to obtain a better thermal match with their heat sources. In this work thermal performance of ORC with and without an internal heat exchanger is comparatively investigated in the range of subcritical and transcritical cycles. R134a is considered as working fluid and special attention is paid to the effect of turbine inlet pressure on the characteristics of the system. Results show that operation with supercritical cycles can provide better performance than subcritical cycles and the internal heat exchanger can improve the thermal efficiency when the temperature of heat source becomes higher.

The policy study on the power grid operation strategy of new and renewable energy combined generation system (도서지역의 신재생에너지복합발전 전력계통 운영방안에 관한 정책연구)

  • Kim, Eui Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.109.1-109.1
    • /
    • 2011
  • KEPCO was operating power plants with diesel generators in 49 islands including Baekryeong-Do, and the generation capacity was about 66 MW in 2008. The cost of fuel is increasing by the international oil price inflation and continuous rise of oil price is predicted. For the stabilizing of electric power supply to the separate islands, renewable energy and fuel cell systems were considered. Hydrogen is made using renewable energy such as wind power and solar energy, and then a fuel cell system generates electricity with the stored hydrogen. Though the system efficiency is low, it is treated as the only way to secure the stable electric supply using renewable energy at this present. The analytic hierarchy process was used to select suitable candidate island for the system installation and 5 islands including Ulleung-Do were selected. Economic evaluation for the system composed of a kerosene generator, a wind power, an electrolysis, and a fuel cell system was conducted with levelized generation cost based on present value methode. As the result, the necessity of renewable energy combined generation system and micro grid composition in the candidated islands was confirmed. Henceforth, the development of an integration technology which connects micro grid to the total power grid will be needed.

  • PDF

The Case Study on Urban Renewable-energy Using System Development (도시 신재생에너지 이용시스템 개발을 위한 사례조사 연구)

  • Go, Myeong-Jin;Kang, Seung-A;Go, Yu-Mi;Wang, Moon-Hee;Choi, Mi-Yuong;Kim, Yong-Shik
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.287-293
    • /
    • 2008
  • As the instability of international societies on the energy resources has increasingly been deepened due to excessive use of fossil fuels, the importance of energy saving and global environment protection has highlighted, So the interests in environment-friendly and stable new & renewable energy have been dramatically increased. The studies on reconstructing the old-fashioned towns economically, socially and physically have been also significantly increased. In this urban regeneration, renewable-energy using systems were aggressively applied to overcome the energy and environmental problems of the existing towns. There have been many of studies on the compound applications of the renewable-energy using systems in the advanced countries while they are insufficient in Korea. As a preliminary study of urban renewable-energy using system development, this paper surveyed the foreign cases applied to key technologies such as geothermal energy, hydrogen fuel cell and bioenergy among the renewable-energies in urban built environment.

  • PDF

TiO2 Nanotube Arrays Sensitized with CdS and CdSe for Solar Hydrogen Production (태양광 수소 생산용 CdS와 CdSe 흡착 TiO2 나노튜브 어레이)

  • Shaislamov, Ulugbek;Kim, Hyun;Yang, Bee-Lyong
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.1
    • /
    • pp.130-133
    • /
    • 2012
  • In this work we report investigation results of enhanced visible light photocatalytic properties of CdS and CdSe sensitized $TiO_2$ nanotube heterostructures. Anodically grown ordered $TiO_2$ nanotube arrays were sensitized with CdS and CdSe by using successive ionic layer adsorption and reaction method. Photocatalytic measurements revealed that heterostructured samples show enhanced photocurrent density under the visible light illumination. Improved visible light performance of the heterostuctures was explained by lower band gap of the CdS and CdSe and their favorable conduction band positions relative to $TiO_2$. Moreover, due to the lower band gap of the CdSe (1.7 eV) compared to CdS (2.4 eV), both photocurrent density and photoconversion efficiency results showed superior activity.

Synthesis of Carbon Nanotube and Optical Application (탄소나노튜브의 제조 및 광학적 응용 연구)

  • Joo, Young-Joon;So, Won-Wook;Kim, Heejoo;Chol, Ho-Suk;Moon, Sang-Jin
    • Journal of Hydrogen and New Energy
    • /
    • v.14 no.3
    • /
    • pp.247-257
    • /
    • 2003
  • To investigate the effect of preparing condition on the physical properties of carbon nanotubes suitable for optical applications, carbon nanotubes were synthesized by thermal chemical vapor deposition using Ni particles as a catalyst on stainless steel substrate and acetylene as a reactant gas. To examine the physical and optical properties, SEM, TEM, Ram an, UV-visible, and photoluminescence spectroscopy were used. The physical properties of carbon nanotubes such as diameter, degree of growth density and morphology were closely related to such experimental conditions as Ni particle size, growing pressure, and etching condit on of Ni particles, it appeared from the light absorbance and photoluminescence spectra of carbon nanotube mixture prepared with an addition of a photopolymer, P3HT(Poly(3-hexylthIop hene)) that carbon nanotube could do a role as a kind of electron acceptor for solar cell application.

Durability enhancement of anion exchange membranes for water electrolysis: an updated review

  • Akter, Mahamuda;Park, Jong-Hyeok;Kim, Beom-Seok;Lee, Minyoung;Jeong, Dahye;Shin, Jiyun;Park, Jin-Soo
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.6
    • /
    • pp.319-327
    • /
    • 2022
  • Ion exchange membranes have been developed from laboratory tools to industrial products with significant technical and trade impacts in the last 70 years. Today, ion exchange membranes are successfully applied for water and energy for different electro-membrane processes. Hydrogen could be produced by electrochemical water splitting using renewable energy, for example, solar, biomass, geothermal and wind energy. This review briefly summarizes the recent studies reporting the state-of-the-art anion-exchange membrane water electrolysis, especially focusing on the enhancement of the durability of anion-exchange membranes. Anion-exchange membrane water electrolysis could be used as inexpensive non-noble metal electrocatalysts that are capable of producing low cost of hydrogen. However, the main challenge of anion-exchange membrane water electrolysis is to increase the performance and durability. In this mini review, the limiting factors of the durability and the technology enhancing the durability will be discussed for anion exchange membrane water electrolysis.

Economic Analysis Study on the R&D Effect of Performance Improvement of the Tri-generation Fuel Cell System (연료전지 삼중열병합 시스템의 성능개선 R&D 효과에 대한 경제성 분석 연구)

  • Ahn, Jong-Deuk;Lee, Kwan-Young;Seo, Seok-Ho
    • New & Renewable Energy
    • /
    • v.18 no.2
    • /
    • pp.26-39
    • /
    • 2022
  • Considering the recent substantial increase in national research and development (R&D) budgets in the energy sector there has been increased Interest in the effectiveness of government R&D investments. We conducted a case study to calculate the allowable scale and effectiveness of R&D investment by calculating the direct performance improvement effect resulting from R&D investment as an economic value. Using conditions that existed prior to R&D investments as a reference, five cases in which performance improved due to R&D investments were compared and analyzed. The government's financial investment is increasing rapidly in line with the establishment of the national hydrogen roadmap. R&D is needed to enhance the current low technology readiness level of hydrogen fuel cells compared to solar and wind energy fields. Therefore, an R&D project to improve the performance of the fuel cell system was selected as this case study's subject. Using the results in this study, the allowable level of investment in the task unit of national R&D projects could be calculated. Moreover, it is advisable to provide a standard for rational decision making for new R&D investments since it is possible to determine investment priorities among a large number of candidates.