• Title/Summary/Keyword: Solar energy material

Search Result 604, Processing Time 0.03 seconds

Soldering Process of PV Module manufacturing and Reliability (태양전지 모듈의 솔더링 공정에 대한 신뢰성)

  • Kim, S.J.;Choi, J.Y.;Kong, J.H.;Moon, J.H.;Lee, S.H.;Shim, W.H.;Lee, E.H.;Lee, E.J.;Lee, H.S.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.303-306
    • /
    • 2011
  • Although PV module manufacturing and its structure are simple, the semi-permanent products can be used out doors for more than twenty years. Therefore it is need to choose proper materials and optimize manufacturing process. This paper suggest that factors of degradation need to be studied to achieve a more understanding of PV module Degradation rates and material failure. Nowadays durability of the PV Module is very important to sustain output safety for obtaining reliability. This paper is about the experiment that soldering uniformity of soldering process and to make least void from soldering process. From This study soldering flux residue and soldering method is main factor to form void blocked soldering uniformity and by using this.

  • PDF

A performance study of organic solar cells by electrode and interfacial modification (전극과 계면간의 개질에 의한 유기태양전지의 성능 연구)

  • Kang, Nam-Su;Eo, Yong-Seok;Ju, Byeong-Kwon;Yu, Jae-Woong;Chin, Byung-Doo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.67-67
    • /
    • 2008
  • Application of organic materials with low cost, easy fabrication and advantages of flexible device are increasing attention by research work. Recently, one of them, organic solar cells were rapidly increased efficiency with regioregular poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyricacidmethylester (PCBM) used typical material. To increased efficiency of organic solar cell has tried control of domain of PCBM and crystallite of P3HT by thermal annealing and solvent vapor annealing. [4-6] In those annealing effects, be made inefficiently efficiency, which is increased fill factor (FF), and current density by phase-separated morphology with blended P3HT and PCBM. In addition, increased conductivity by modified hole transfer layer (HTL) such as Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS), increased both optical and conducting effect by titanium oxide (TiOx), and changed cathode material for control work function were increased efficiency of Organic solar cell. In this study, we had described effect of organic photovoltaics by conductivity of interlayer such as PEDOT:PSS and TCO (Transparent conducting oxide) such as ITO, which is used P3HT and PCBM. And, we have measured with exactly defined shadow mask to study effect of solar cell efficiency according to conductivity of hole transfer layer.

  • PDF

A Study of Heat Storage System with Phase Change Material - Inward Melting in a Horizontal Cylinder (상변화 물질을 이용한 잠열축열조에 관한 기초 연구 - 수평원관내의 내향용융 열전달 실험 -)

  • Cho, N.C.;Kim, J.G.;Lee, C.M.;Yim, C.S.
    • Solar Energy
    • /
    • v.9 no.3
    • /
    • pp.44-54
    • /
    • 1989
  • Heat transfer phenomena during inward melting process of the phase change material were studied experimentally. N-docosane paraffin [$C_{22}H_{46}$] is used for phase change material and its melting temperature is $42.5^{\circ}C$. Experiments were performed for melting of an initially no-sub cooled or subcooled solid in a horizontal cylinder, in order to compare and investigate the radial temperature distribution, ratio of melting and melted mass, various energy components stored from the cylinder wall, figure of the melting front in the horizontal cylinder. The solid-liquid interface motion during phase change was recorded photographically. The experimental results reaffirmed the dominant role played by the conduction at early stage, by the natural convection at longer time during inward melting in the horizontal cylinder. Ratio of melting and melted mass are more influenced by wall temperature, rather than by the initial temperature of solid. The latent energy is the largest contributor to the total stored energy.

  • PDF

AZO Transparent Electrodes for Semi-Transparent Silicon Thin Film Solar Cells (AZO 투명 전극 기반 반투명 실리콘 박막 태양전지)

  • Nam, Jiyoon;Jo, Sungjin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.6
    • /
    • pp.401-405
    • /
    • 2017
  • Because silicon thin film solar cells have a high absorption coefficient in visible light, they can absorb 90% of the solar spectrum in a $1-{\mu}m$-thick layer. Silicon thin film solar cells also have high transparency and are lightweight. Therefore, they can be used for building integrated photovoltaic (BIPV) systems. However, the contact electrode needs to be replaced for fabricating silicon thin film solar cells in BIPV systems, because most of the silicon thin film solar cells use metal electrodes that have a high reflectivity and low transmittance. In this study, we replace the conventional aluminum top electrode with a transparent aluminum-doped zinc oxide (AZO) electrode, the band level of which matches well with that of the intrinsic layer of the silicon thin film solar cell and has high transmittance. We show that the AZO effectively replaces the top metal electrode and the bottom fluorine-doped tin oxide (FTO) substrate without a noticeable degradation of the photovoltaic characteristics.

Thermodynamic Analysis of a Double-Effect Absorption Heating System Using Water-LiBr-LiSCN Solution with Solar Evaporator Heating (증발기 열원으로 태양열을 이용하며 LiSCN+LiBr 수용액을 사용하는 흡수식 2중효용 난방시스템의 열역학적 해석)

  • Won, Seung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.3
    • /
    • pp.27-35
    • /
    • 2005
  • In this paper, a thermodynamic analysis was performed to provide design data for a double-effect absorption heating system with water-LiBr-LiSCN mixture which utilizes solar energy as evaporator heat source. In addition, a comparative study of the water-LiBr-LiSCN mixture against the water-LiBr pair was conducted by a computer simulation. The computer simulation is based on mass, material and heat balance equations for each part of the system. Coefficients of performance and flow ratios for effects of different operating temperatures are investigated. It is found that the heating COP is higher for the water-LiBr-LiSCN mixture than for the water-LiBr pair, and FR is lower for the former.

Study of Light-induced Degradation in Thin Film Silicon Solar Cells: Hydrogenated Amorphous Silicon Solar Cell and Nano-quantum Dot Silicon Thin Film Solar Cell (박막 실리콘 태양전지의 광열화현상 연구: 비정질 실리콘 태양전지 및 나노양자점 실리콘 박막 태양전지)

  • Kim, Ka-Hyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • Light induced degradation is one of the major research challenges of hydrogenated amorphous silicon related thin film silicon solar cells. Amorphous silicon shows creation of metastable defect states, originating from elevated concentration of dangling bonds during light exposure. The metastable defect states work as recombination centers, and mostly affects quality of intrinsic layer in solar cells. In this paper we present results of light induced degradation in thin film silicon solar cells and discussion on physical origin, mechanism and practical solutions of light induced degradation in thin film silicon solar cells. In-situ light-soaking IV measurement techniques are presented. We also present thin film silicon material with silicon nano-quantum dots embedded within amorphous matrix, which shows superior stability during light-soaking. Our results suggest that solar cell using silicon nano-quantum dots in abosrber layer shows superior stability under light soaking, compared to the conventional amorphous silicon solar cell.

Investigation of the Ni/Cu metal grid space for high-effiency, low cost crystlline silicon solar cells (고효율, 저가화 태양전지에 적합한 Ni/Cu 금속 전극 간격에 따른 특성 평가)

  • Kim, Min-Jeong;Lee, Ji-Hun;Cho, Kyeng-Yeon;Lee, Soo-Hong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.225-229
    • /
    • 2009
  • The front metal contact is one of the most important element influences in efficiency in the silicon solar cell. First of all selective of the material and formation method is important in metal contacts. Commercial solar cells with screen-printed contacts formed by using Ag paste process is simple relatively and mass production is easy. But it suffer from a low fill factor and a high shading loss because of high contact resistance. Besides Ag paste too expensive. because of depends income. This paper applied for Ni/Cu metallization replace for paste of screen printing front metal contact. Low cost Ni and Cu metal contacts have been formed by using electroless plating and electroplating techniques to replace the screen-printed Ag contacts. Ni has been proposed as a suitable silicide for the salicidation process and is expected to replace conventional silicides. Copper is a promising material for the electrical contacts in solar cells in terms of conductivity and cost. In experiments Ni/Cu metal contact applied same grid formation of screen-printed solar cell. And it has variation of different grid spacing. It was verified that the wide spacing of grid finger could increase the series resistance also the narrow spacing of grid finger also implies a grid with a higher density of grid fingers. Through different grid spacing found alteration of efficiency.

  • PDF

Near-IR Quantum Cutting Phosphors: A Step Towards Enhancing Solar Cell Efficiency

  • Jadhav, Abhijit P.;Khan, Sovann;Kim, Sun Jin;Cho, So-Hye
    • Applied Science and Convergence Technology
    • /
    • v.23 no.5
    • /
    • pp.221-239
    • /
    • 2014
  • The global demand for energy has been increasing since past decades. Various technologies have been working to find a suitable alternative for the generation of sustainable energy. Photovoltaic technologies for solar energy conversion represent one of the significant routes for the green and renewable energy production. Despite of remarkable improvement in solar cell technologies, the generation of power is still suffering with lower energy conversion efficiency, high production cost, etc. The major problem in improving the PV efficiency is spectral mismatch between the incident solar spectrum and bandgap of a semiconductor material used in solar cell. Luminescent materials such as rare-earth doped phosphor materials having the quantum efficiency higher than unity can be helpful for photovoltaic applications. Quantum cutting phosphors are the most suitable candidates for the generation of two or more low-energy photons for the absorption of every incident high-energy photons. The phosphors which are capable of converting UV photon to visible and near-IR (NIR) photon are studied primarily for photovoltaic applications. In this review, we will survey various near IR quantum cutting phosphors with respective to their synthesis method, energy transfer mechanism, nature of activator, sensitizer and dopant materials incorporation and energy conversion efficiency considering their applications in photovoltaics.

Room temperature-processed TiO2 coated photoelectrodes for dye-sensitized solar cells

  • Kim, Dae-gun;Lee, Kyung-min;Lee, Hyung-bok;Lim, Jong-woo;Park, Jae-hyuk
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.2
    • /
    • pp.61-65
    • /
    • 2020
  • The depletion of fossil fuels and the increase in environmental awareness have led to greater interest in renewable energy. In particular, solar cells have attracted attention because they can convert an infinite amount of solar energy into electricity. Dye-sensitize solar cells (DSSCs) are low cost third generation solar cells that can be manufactured using environmentally friendly materials. However, DSSC photoelectrodes are generally produced by screen printing, which requires high temperature heat treatment, and low temperature processes that can be used to produce flexible DSSCs are limited. To overcome these temperature limitations, this study fabricated photoelectrodes using room-temperature aerosol deposition. The resulting DSSCs had an energy conversion efficiency of 4.07 %. This shows that it is possible to produce DSSCs and flexible devices using room-temperature processes.