• Title/Summary/Keyword: Solar cell strip

Search Result 4, Processing Time 0.019 seconds

Electrical Characteristics of Crystalline Silicon Solar Cell Strip for High Power Photovoltaic Modules (고출력 슁글드 모듈 제작을 위한 결정질 실리콘 태양전지 분할 셀의 전기적 특성)

  • Noh, Eun Bin;Bae, Jae Sung;Kim, Jung Hoon;You, Jong Hyun;Lee, Jaehyeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.6
    • /
    • pp.433-437
    • /
    • 2021
  • As the demand for new and renewable energy increases due to the depletion of fossil fuels, solar power generation, a core energy source for new and renewable energy, requires research on solar modules for high output power generation. In this paper, the electrical characteristics of solar cell strip at the edge and in the center of single-crystal silicon having a semi-square shape were analyzed. The cell strip located in the center showed the efficiency increase by 0.26% compared to the cell strip at the edge of the solar cell. A shingled photovoltaic module was manufactured for each cell strip. As a result, the output power of the module using the cell strip located in the center was higher by 0.992%.

Simulation of Shingled String Characteristics Depending on Cell Strips Type for High Power Photovoltaic Modules (고출력 태양광 모듈을 위한 분할 셀 종류에 따른 슁글드 스트링 특성 시뮬레이션)

  • Park, Ji Su;Oh, Won Je;Lee, Jae Hyeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.1
    • /
    • pp.10-15
    • /
    • 2020
  • Recently, with the increase in the use of urban solar power, solar modules are required to produce high power in limited areas. In this report, we proposed the fabrication of a high-power photovoltaic module using shingles technology, and developed accurate string characteristic simulations based on circuit modeling. By comparing the resistance components between the interconnected cells and the cell strips, the ECA resistance was determined to be 0.003 Ω. Based on the equivalent circuit of the modeled shingled string, string simulation was performed according to the type of cell strip. As a result, it was determined that the cell efficiency of the 4-cell strip was the highest at 19.66%, but the efficiency of the string simulated with the 6-cell strip was the highest at 20.48% in the string unit.

Measurement of Bow in Silicon Solar Cell Using 3D Image Scanner (3D 스캔을 이용한 실리콘 태양전지의 휨 현상 측정 연구)

  • Yoon, Phil Young;Baek, Tae Hyeon;Song, Hee Eun;Chung, Haseung;Shin, Seungwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.9
    • /
    • pp.823-828
    • /
    • 2013
  • To reduce the cost per watt of photovoltaic power, it is important to reduce the cell thickness of crystalline silicon solar cells. As the thickness of the silicon layer is reduced, two distinctive thermal expansion rates between the silicon and the aluminum layer induce bowing in a solar cell. With a thinner silicon layer, the bowing distance grows exponentially. Excessive bowing could damage the silicon wafer. In this study, we tried to measure an irregularly curved silicon solar cell more accurately using a 3D image scanner. For the detailed analysis of the three-dimensional bowing shape, a least square fit was applied to the point data from the scanned image. It has been found that the bowing distance and shape distortion increase with a decrease in the thickness of the silicon layer. An Ag strip on top of the silicon layer can reduce the bowing distance.

Development of Large-area Plasma Sources for Solar Cell and Display Panel Device Manufacturing

  • Seo, Sang-Hun;Lee, Yun-Seong;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.148-148
    • /
    • 2011
  • Recently, there have been many research activities to develop the large-area plasma source, which is able to generate the high-density plasma with relatively good uniformity, for the plasma processing in the thin-film solar cell and display panel industries. The large-area CCP sources have been applied to the PECVD process as well as the etching. Especially, the PECVD processes for the depositions of various films such as a-Si:H, ${\mu}c$-Si:H, Si3N4, and SiO2 take a significant portion of processes. In order to achieve higher deposition rate (DR), good uniformity in large-area reactor, and good film quality (low defect density, high film strength, etc.), the application of VHF (>40 MHz) CCP is indispensible. However, the electromagnetic wave effect in the VHF CCP becomes an issue to resolve for the achievement of good uniformity of plasma and film. Here, we propose a new electrode as part of a method to resolve the standing wave effect in the large-area VHF CCP. The electrode is split up a series of strip-type electrodes and the strip-type electrodes and the ground ones are arranged by turns. The standing wave effect in the longitudinal direction of the strip-type electrode is reduced by using the multi-feeding method of VHF power and the uniformity in the transverse direction of the electrodes is achieved by controlling the gas flow and the gap length between the powered electrodes and the substrate. Also, we provide the process results for the growths of the a-Si:H and the ${\mu}c$-Si:H films. The high DR (2.4 nm/s for a-Si:H film and 1.5 nm/s for the ${\mu}c$-Si:H film), the controllable crystallinity (~70%) for the ${\mu}c$-Si:H film, and the relatively good uniformity (1% for a-Si:H film and 7% for the ${\mu}c$-Si:H film) can be obtained at the high frequency of 40 MHz in the large-area discharge (280 mm${\times}$540 mm). Finally, we will discuss the issues in expanding the multi-electrode to the 8G class large-area plasma processing (2.2 m${\times}$2.4 m) and in improving the process efficiency.

  • PDF